前言

本篇将结合JDK1.6的TreeMap源码,来一起探索红-黑树的奥秘。红黑树是解决二叉搜索树的非平衡问题。

当插入(或者删除)一个新节点时,为了使树保持平衡,必须遵循一定的规则,这个规则就是红-黑规则: 
1) 每个节点不是红色的就是黑色的 
2) 根总是黑色的 
3) 如果节点是红色的,则它的子节点必须是黑色的(反之倒不一定必须为真) 
4) 从跟到叶节点或者空子节点的每条路径,必须包含相同数目的黑色节点

插入一个新节点

红-黑树的插入过程和普通的二叉搜索树基本一致:从跟朝插入点位置走,在每个节点处通过比较节点的关键字相对大小来决定向左走还是向右走。

 public V put(K key, V value) {
Entry<K,V> t = root;
int cmp;
Entry<K,V> parent;
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) {
t = t.left;
} else if (cmp > 0) {
t = t.right;
} else {
// 注意,return退出方法
return t.setValue(value);
}
} while (t != null);
Entry<K,V> e = new Entry<K,V>(key, value, parent);
if (cmp < 0) {
parent.left = e;
} else {
parent.right = e;
}
fixAfterInsertion(e);
size++;
modCount++;
return null;
}

但是,在红-黑树种,找到插入点更复杂,因为有颜色变换和旋转。fixAfterInsertion()方法就是处理颜色变换和旋转,需重点掌握它是如何保持树的平衡(use rotations and the color rules to maintain the tree’s balance)。

下面的讨论中,使用X、P、G表示关联的节点。X表示一个特殊的节点, P是X的父,G是P的父。

X is a node that has caused a rule violation. (Sometimes X refers to a newly inserted node, and sometimes to the child node when a parent and child have a redred conflict.)

On the way down the tree to find the insertion point, you perform a color flip whenever you find a black node with two red children (a violation of Rule 2). Sometimes the flip causes a red-red conflict (a violation of Rule 3). Call the red child X and the red parent P. The conflict can be fixed with a single rotation or a double rotation, depending on whether X is an outside or inside grandchild of G. Following color flips and rotations, you continue down to the insertion point and insert the new node.

After you’ve inserted the new node X, if P is black, you simply attach the new red node. If P is red, there are two possibilities: X can be an outside or inside grandchild of G. If X is an outside grandchild, you perform one rotation, and if it’s an inside grandchild, you perform two. This restores the tree to a balanced state.

按照上面的解释,讨论可分为3个部分,按复杂程度排列,分别是: 
1) 在下行路途中的颜色变换(Color flips on the way down) 
2) 插入节点之后的旋转(Rotations after the node is inserted) 
3) 在向下路途上的旋转(Rotations on the way down)

在下行路途中的颜色变换(Color flips on the way down)

Here’s the rule: Every time the insertion routine encounters a black node that has two red children, it must change the children to black and the parent to red (unless the parent is the root, which always remains black)

The flip leaves unchanged the number of black nodes on the path from the root on down through P to the leaf or null nodes.

尽管颜色变换不会违背规则4,但是可能会违背规则3。如果P的父是黑色的,则P由黑色变成红色时不会有任何问题,但是,如果P的父是红色的,那么在P的颜色变化之后,就有两个红色节点相连接了。这个问题需要在继续向下沿着路径插入新节点之前解决,可以通过旋转修正这个问题,下文将会看到。

插入节点之后的旋转(Rotations after the node is inserted)

新节点在插入之前,树是符合红-黑规则,在插入新节点之后,树就不平衡了,此时需要通过旋转来调整树的平衡,使之重新符合红-黑规则。

可能性1:P是黑色的,就什么事情也不用做。插入即可。

可能性2:P是红色,X是G的一个外侧子孙节点,则需要一次旋转和一些颜色的变化。 
以插入50,25,75,12,6为例,注意节点6是一个外侧子孙节点,它和它的父节点都是红色。

在这个例子中,X是一个外侧子孙节点而且是左子节点,X是外侧子孙节点且为右子节点,是一种与此对称的情况。通过用50,25,75,87,93创建树,同理再画一画图,这里就省略了。

可能性3:P是红色,X是G的一个内侧子孙节点,则需要两次旋转和一些颜色的改变。 
以插入50,25,75,12,18为例,注意节点18是一个内侧子孙节点,它和它的父节点都是红色。

在向下路途上的旋转(Rotations on the way down)

在插入新节点之前,实际上树已经违背了红-黑规则,所以需要插入新节点之前做调整。所以我们本次讨论的主题是“在向下路途准备插入新节点时,上面先进行调整,使上面成为标准的红黑树后,再进行新节点插入”。

外侧子孙节点

以插入50,25,75,12,37,6,18,3为例,例子中违背规则的节点是一个外侧子孙节点。

内侧子孙节点

以插入50,25,75,12,37,31,43为例,例子中违背规则的节点是一个内侧子孙节点。

红-黑树的效率

和一般的二叉搜索树类似,红-黑树的查找、插入和删除的时间复杂度为O(log2N)。

红-黑树的查找时间和普通的二叉搜索树的查找时间应该几乎完全一样。因为在查找过程中并没用到红-黑特征。额外的开销只是每个节点的存储空间都稍微增加了一点,来存储红黑颜色(一个boolean变量)。

final Entry<K, V> getEntry(Object key) {
Comparable <? super K > k = (Comparable <? super K > ) key;
Entry<K, V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0) {
p = p.left;
} else if (cmp > 0) {
p = p.right;
} else {
return p;
}
}
return null;
}

插入和删除的时间要增加一个常数因子,因为不得不在下行的路径上和插入点执行颜色变换和旋转。平均起来一次插入大约需要一次旋转。

因为在大多数应用中,查找的次数比插入和删除的次数多,所以应用红-黑树取代普通的二叉搜索树总体上不会增加太多的时间开销。

参考资料

  1. eclipse如何debug调试jdk源码
  2. 浅谈算法和数据结构: 九 平衡查找树之红黑树

结合java.util.TreeMap源码理解红黑树的更多相关文章

  1. Java数据结构和算法 - TreeMap源码理解红黑树

    前言 本篇将结合JDK1.6的TreeMap源码,来一起探索红-黑树的奥秘.红黑树是解决二叉搜索树的非平衡问题. 当插入(或者删除)一个新节点时,为了使树保持平衡,必须遵循一定的规则,这个规则就是红- ...

  2. Java - TreeMap源码解析 + 红黑树

    Java提高篇(二七)-----TreeMap TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap ...

  3. java.util.TreeMap源码分析

    TreeMap的实现基于红黑树,排列的顺序根据key的大小,或者在创建时提供的比较器,取决于使用哪个构造器. 对于,containsKey,get,put,remove操作,保证时间复杂度为log(n ...

  4. Java集合——TreeMap源码详解

    )TreeMap 是一个有序的key-value集合,它是通过红黑树实现的.因为红黑树是平衡的二叉搜索树,所以其put(包含update操作).get.remove的时间复杂度都为log(n). (2 ...

  5. jdk之java.lang.Integer源码理解

    基本数据类型的包装类java.lang.Integer是我们频繁使用的一个系统类,那么通过一个示例反应出的几个问题来深入理解一下此类的源码. 需求:实现Integer类型的两个数值交换. packag ...

  6. jdk源码分析红黑树——插入篇

    红黑树是自平衡的排序树,自平衡的优点是减少遍历的节点,所以效率会高.如果是非平衡的二叉树,当顺序或逆序插入的时候,查找动作很可能会遍历n个节点 红黑树的规则很容易理解,但是维护这个规则难. 一.规则 ...

  7. java.util.HashSet, java.util.LinkedHashMap, java.util.IdentityHashMap 源码阅读 (JDK 1.8)

    一.java.util.HashSet 1.1 HashSet集成结构 1.2 java.util.HashSet属性 private transient HashMap<E,Object> ...

  8. java.util.HashSet, java.util.LinkedHashMap, java.util.IdentityHashMap 源码阅读 (JDK 1.8.0_111)

    一.java.util.HashSet 1.1 HashSet集成结构 1.2 java.util.HashSet属性 private transient HashMap<E,Object> ...

  9. java.util.HashMap源码分析

    在java jdk8中对HashMap的源码进行了优化,在jdk7中,HashMap处理“碰撞”的时候,都是采用链表来存储,当碰撞的结点很多时,查询时间是O(n). 在jdk8中,HashMap处理“ ...

随机推荐

  1. 运用 finereport 和 oracle 结合开发报表思路大总结

    近排自己学习了一款软件finereport开发报表模块,自己总结了如何了解需求,分析需求,再进行实践应用开发,最后进行测试数据的准确性,部署报表到项目对应的模块中显示. 一.需求(根据需求文档分析) ...

  2. win10 输入法禁用IME

    发现了win10 没法输入,因为禁用IME 右击开始 计算机管理  任务计划程序 打开到Microsoft/Windows/TextServicesFramework  选择操作运行  选择如果任务失 ...

  3. OpenSCAD 建模:相框

    下载地址:https://github.com/ZhangGaoxing/openscad-models/tree/master/PhotoFrame 代码: module bottom(){ dif ...

  4. 【NOIP2016提高组】 Day2 T2 蚯蚓

    题目传送门:https://www.luogu.org/problemnew/show/P2827 自测时被题面所误导...,题面中说逢t的倍数才输出答案,以为有什么玄妙的方法直接将m次操作变成了m/ ...

  5. Linux下MySQL5.7.19

    第一次在自己虚机上安装mysql 中间碰到很多问题 在这里记下来,分享一下. linux centOS 6 mysql版本 mysql-5.7.19-linux-glibc2.12-x86_64.ta ...

  6. angular1.x + ES6开发风格记录

    angular1.x和ES6开发风格 一.Module ES6有自己的模块机制,所以我们要通过使用ES6的模块机制来淡化ng的框架,使得各业务逻辑层的看不出框架的痕迹,具体的做法是: 把各功能模块的具 ...

  7. YARN到底是怎么一回事?

    文章思路: 首先提出第一代MRv1(MapReduce Version1.0)的局限性,然后解释YARN是怎么克服这些局限性的,接着说了YARN的编程模型,说了YARN的组成,YARN的通信协议和YA ...

  8. js获取浏览器版本

    获取火狐,谷歌,ie,常见浏览器的方法 function myBrowser(){ var userAgent = navigator.userAgent, rMsie = /(msie\s|trid ...

  9. 使用javascript编写根据用户鼠标控制背景图片的移动

    在一家VR公司做前端. 起初进入前端就是一种内心的直觉,创造更好的用户体验,让页面更加友好,当然最起初接手web项目还是为了完成毕业设计. 一个网上图书商城,虽然不大,但五脏都有毕竟开刀所以避免不了很 ...

  10. Python基础-注释-变量赋值

    一.注释 # 注释 \n 行分隔符 \ 继续上一行 '''   *** ''' 多行注释 二.基本规则 : 分开代码块(组)   头$尾 缩进块  语句代码块  用缩进深度区分 空行     用于分割 ...