结合java.util.TreeMap源码理解红黑树
前言
本篇将结合JDK1.6的TreeMap源码,来一起探索红-黑树的奥秘。红黑树是解决二叉搜索树的非平衡问题。
当插入(或者删除)一个新节点时,为了使树保持平衡,必须遵循一定的规则,这个规则就是红-黑规则:
1) 每个节点不是红色的就是黑色的
2) 根总是黑色的
3) 如果节点是红色的,则它的子节点必须是黑色的(反之倒不一定必须为真)
4) 从跟到叶节点或者空子节点的每条路径,必须包含相同数目的黑色节点
插入一个新节点
红-黑树的插入过程和普通的二叉搜索树基本一致:从跟朝插入点位置走,在每个节点处通过比较节点的关键字相对大小来决定向左走还是向右走。
public V put(K key, V value) {
Entry<K,V> t = root;
int cmp;
Entry<K,V> parent;
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) {
t = t.left;
} else if (cmp > 0) {
t = t.right;
} else {
// 注意,return退出方法
return t.setValue(value);
}
} while (t != null);
Entry<K,V> e = new Entry<K,V>(key, value, parent);
if (cmp < 0) {
parent.left = e;
} else {
parent.right = e;
}
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
但是,在红-黑树种,找到插入点更复杂,因为有颜色变换和旋转。fixAfterInsertion()
方法就是处理颜色变换和旋转,需重点掌握它是如何保持树的平衡(use rotations and the color rules to maintain the tree’s balance)。
下面的讨论中,使用X、P、G表示关联的节点。X表示一个特殊的节点, P是X的父,G是P的父。
X is a node that has caused a rule violation. (Sometimes X refers to a newly inserted node, and sometimes to the child node when a parent and child have a redred conflict.)
On the way down the tree to find the insertion point, you perform a color flip whenever you find a black node with two red children (a violation of Rule 2). Sometimes the flip causes a red-red conflict (a violation of Rule 3). Call the red child X and the red parent P. The conflict can be fixed with a single rotation or a double rotation, depending on whether X is an outside or inside grandchild of G. Following color flips and rotations, you continue down to the insertion point and insert the new node.
After you’ve inserted the new node X, if P is black, you simply attach the new red node. If P is red, there are two possibilities: X can be an outside or inside grandchild of G. If X is an outside grandchild, you perform one rotation, and if it’s an inside grandchild, you perform two. This restores the tree to a balanced state.
按照上面的解释,讨论可分为3个部分,按复杂程度排列,分别是:
1) 在下行路途中的颜色变换(Color flips on the way down)
2) 插入节点之后的旋转(Rotations after the node is inserted)
3) 在向下路途上的旋转(Rotations on the way down)
在下行路途中的颜色变换(Color flips on the way down)
Here’s the rule: Every time the insertion routine encounters a black node that has two red children, it must change the children to black and the parent to red (unless the parent is the root, which always remains black)
The flip leaves unchanged the number of black nodes on the path from the root on down through P to the leaf or null nodes.
尽管颜色变换不会违背规则4,但是可能会违背规则3。如果P的父是黑色的,则P由黑色变成红色时不会有任何问题,但是,如果P的父是红色的,那么在P的颜色变化之后,就有两个红色节点相连接了。这个问题需要在继续向下沿着路径插入新节点之前解决,可以通过旋转修正这个问题,下文将会看到。
插入节点之后的旋转(Rotations after the node is inserted)
新节点在插入之前,树是符合红-黑规则,在插入新节点之后,树就不平衡了,此时需要通过旋转来调整树的平衡,使之重新符合红-黑规则。
可能性1:P是黑色的,就什么事情也不用做。插入即可。
可能性2:P是红色,X是G的一个外侧子孙节点,则需要一次旋转和一些颜色的变化。
以插入50,25,75,12,6为例,注意节点6是一个外侧子孙节点,它和它的父节点都是红色。
在这个例子中,X是一个外侧子孙节点而且是左子节点,X是外侧子孙节点且为右子节点,是一种与此对称的情况。通过用50,25,75,87,93创建树,同理再画一画图,这里就省略了。
可能性3:P是红色,X是G的一个内侧子孙节点,则需要两次旋转和一些颜色的改变。
以插入50,25,75,12,18为例,注意节点18是一个内侧子孙节点,它和它的父节点都是红色。
在向下路途上的旋转(Rotations on the way down)
在插入新节点之前,实际上树已经违背了红-黑规则,所以需要插入新节点之前做调整。所以我们本次讨论的主题是“在向下路途准备插入新节点时,上面先进行调整,使上面成为标准的红黑树后,再进行新节点插入”。
外侧子孙节点
以插入50,25,75,12,37,6,18,3为例,例子中违背规则的节点是一个外侧子孙节点。
内侧子孙节点
以插入50,25,75,12,37,31,43为例,例子中违背规则的节点是一个内侧子孙节点。
红-黑树的效率
和一般的二叉搜索树类似,红-黑树的查找、插入和删除的时间复杂度为O(log2N)。
红-黑树的查找时间和普通的二叉搜索树的查找时间应该几乎完全一样。因为在查找过程中并没用到红-黑特征。额外的开销只是每个节点的存储空间都稍微增加了一点,来存储红黑颜色(一个boolean变量)。
final Entry<K, V> getEntry(Object key) {
Comparable <? super K > k = (Comparable <? super K > ) key;
Entry<K, V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0) {
p = p.left;
} else if (cmp > 0) {
p = p.right;
} else {
return p;
}
}
return null;
}
插入和删除的时间要增加一个常数因子,因为不得不在下行的路径上和插入点执行颜色变换和旋转。平均起来一次插入大约需要一次旋转。
因为在大多数应用中,查找的次数比插入和删除的次数多,所以应用红-黑树取代普通的二叉搜索树总体上不会增加太多的时间开销。
参考资料
结合java.util.TreeMap源码理解红黑树的更多相关文章
- Java数据结构和算法 - TreeMap源码理解红黑树
前言 本篇将结合JDK1.6的TreeMap源码,来一起探索红-黑树的奥秘.红黑树是解决二叉搜索树的非平衡问题. 当插入(或者删除)一个新节点时,为了使树保持平衡,必须遵循一定的规则,这个规则就是红- ...
- Java - TreeMap源码解析 + 红黑树
Java提高篇(二七)-----TreeMap TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap ...
- java.util.TreeMap源码分析
TreeMap的实现基于红黑树,排列的顺序根据key的大小,或者在创建时提供的比较器,取决于使用哪个构造器. 对于,containsKey,get,put,remove操作,保证时间复杂度为log(n ...
- Java集合——TreeMap源码详解
)TreeMap 是一个有序的key-value集合,它是通过红黑树实现的.因为红黑树是平衡的二叉搜索树,所以其put(包含update操作).get.remove的时间复杂度都为log(n). (2 ...
- jdk之java.lang.Integer源码理解
基本数据类型的包装类java.lang.Integer是我们频繁使用的一个系统类,那么通过一个示例反应出的几个问题来深入理解一下此类的源码. 需求:实现Integer类型的两个数值交换. packag ...
- jdk源码分析红黑树——插入篇
红黑树是自平衡的排序树,自平衡的优点是减少遍历的节点,所以效率会高.如果是非平衡的二叉树,当顺序或逆序插入的时候,查找动作很可能会遍历n个节点 红黑树的规则很容易理解,但是维护这个规则难. 一.规则 ...
- java.util.HashSet, java.util.LinkedHashMap, java.util.IdentityHashMap 源码阅读 (JDK 1.8)
一.java.util.HashSet 1.1 HashSet集成结构 1.2 java.util.HashSet属性 private transient HashMap<E,Object> ...
- java.util.HashSet, java.util.LinkedHashMap, java.util.IdentityHashMap 源码阅读 (JDK 1.8.0_111)
一.java.util.HashSet 1.1 HashSet集成结构 1.2 java.util.HashSet属性 private transient HashMap<E,Object> ...
- java.util.HashMap源码分析
在java jdk8中对HashMap的源码进行了优化,在jdk7中,HashMap处理“碰撞”的时候,都是采用链表来存储,当碰撞的结点很多时,查询时间是O(n). 在jdk8中,HashMap处理“ ...
随机推荐
- php使用curl下载指定大小的文件
php中使用基于libcurl的curl函数,可以对目标url发起http请求并获取返回的响应内容.通常的请求方式类似如下的代码: public function callFunction($url, ...
- Swift搭建服务端
原文:Hello Server Side Swift 作者:Logan Wright 译者:CocoaChina--kmyhy(博客) 自从苹果官方发布了一个 Swift 的 Linux 开源版本之后 ...
- 【机器学习实战】第5章 Logistic回归
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...
- python 携带cookie访问网站(python接口测试post)
最近在使用自己研究性能测试工具的时候想到,使用python向服务器不断发送数据以作为并发测试.大概情况如下: #coding=utf-8 import urllib2 import urllib im ...
- 搭建阿里云 centos mysql tomcat jdk
[toc] 阿里云使用centos 登录 http://www.aliyun.com/ 点击登录 进入控制 https://home.console.aliyun.com/ 云服务器 运行中 把ip输 ...
- Java 多线程的一些问题
1.volatile关键字的作用 一个非常重要的问题,是每个学习.应用多线程的Java程序员都必须掌握的.理解volatile关键字的作用的前提是要理解Java内存模型,volatile关键字的作用主 ...
- 我推荐的 Java Web 学习路线
晚上再 V2 的 Java 的节点看到有人问 Java Web 书籍推荐.我这半年多的时间,也从别的方向开始转向 Java 服务端开发,所以,我来说下我的学习路线,帮助有需要的朋友把半只脚踏进 Spr ...
- 容器与Docker简介(一)——微软微服务电子书翻译系列
前不久参加了深圳的Azure开源者峰会,会上张善友张老师推荐了微软的一个架构网站:.NET Application Architecture 这几天正好工作比较闲,看了下里面关于微服务架构的介绍,非常 ...
- LeetCode 548. Split Array with Equal Sum (分割数组使得子数组的和都相同)$
Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies fol ...
- LeetCode 88. Merge Sorted Array(合并有序数组)
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array. Note:Yo ...