题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。

知识点:

莫比乌斯反演/*12*/

线性筛求莫比乌斯反演函数:

void Init()
{
memset(vis,0,sizeof(vis));
mu[1] = 1;
cnt = 0;
for(int i=2; i<N; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -1;
}
for(int j=0; j<cnt&&i*prime[j]<N; j++)
{
vis[i*prime[j]] = 1;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
}

题解:

转化题意就是[1,n/k],[1,m/k]之间互质的数的个数。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=100000+10;
int u[N],prime[N];
bool vis[N]; void init()
{
memset(vis,0,sizeof(vis));
u[1] = 1;
int cnt = 0;
for(int i=2; i<N; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
u[i] = -1;
}
for(int j=0; j<cnt&&i*prime[j]<N; j++)
{
vis[i*prime[j]] = 1;
if(i%prime[j]) u[i*prime[j]] = -u[i];
else
{
u[i*prime[j]] = 0;
break;
}
}
}
}
int main()
{
init();
int t;
cin>>t;
int a,b,c,d,k;
for(int kase=1;kase<=t;kase++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==0)
{
printf("Case %d: 0\n",kase);
continue;
}
long long ans=0;
int ma=max(b,d),mi=min(b,d);
for(int i=k;i<=mi;i+=k)
{
ans+=(long long)u[i/k]*((ma/i)*2-(mi/i)+1)*(mi/i)/2;
}
printf("Case %d: %I64d\n",kase,ans);
}
return 0;
}

GCD

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.

Input

The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.

Output

For each test case, print the number of choices. Use the format in the example.

Sample Input


2
1 3 1 5 1
1 11014 1 14409 9

Sample Output


Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5). 

hdu1695 GCD(莫比乌斯反演)的更多相关文章

  1. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  2. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  5. hdu1695(莫比乌斯反演)

    传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...

  6. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  7. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  8. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

  9. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  10. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

随机推荐

  1. scheduleInRunLoop作用

    例子一: - (void)setUpStreamForFile:(NSString *)path { // iStream is NSInputStream instance variable iSt ...

  2. 使用OAuth、Identity创建WebApi认证接口供客户端调用

    前言 现在的web app基本上都是前后端分离,之前接触的大部分应用场景最终产品都是部署在同一个站点下,那么随着WebApi(Restful api)的发展前后端实现的完全分离,前端不在后端框架的页面 ...

  3. Linux 系统命令笔记

    前言 翻出N年前学习笔记,感觉还有点用,放到博客备忘,自己查看用. 一. 系统命令笔记 1.系统 % /etc/issue           # 查看操作系统版本  %          # 观察系 ...

  4. Autofac 的属性注入,IOC的坑

    Autofac 是一款优秀的IOC的开源工具,完美的适配.Net特性,但是有时候我们想通过属性注入的方式来获取我们注入的对象,对不起,有时候你还真是获取不到,这因为什么呢? 1.你对Autofac 不 ...

  5. C#——this关键字(1)

    //我的C#是跟着猛哥(刘铁猛)(算是我的正式老师)<C#语言入门详解>学习的,微信上猛哥也给我讲解了一些不懂得地方,对于我来说简直是一笔巨额财富,难得良师! 在学习C#的时候,老师讲的示 ...

  6. 和Java相关的书籍,想成为架构师的请收藏一下啊

    1.<<Effective Java 中文第二版>> 2.<<Java并发编程实践>> 3.<<Java核心技术(原书第8版)卷I_基础知识 ...

  7. ASP.NET Core File Providers

    原文地址:FileProvider By Steve Smith ASP.NET Core通过对File Providers的使用实现了对文件系统访问的抽象. 查看或下载示例代码 File Provi ...

  8. Checkbox 模板和样式

    <Style TargetType="{x:Type CheckBox}"> <Setter Property="FontFamily" Va ...

  9. 修复 Visual Studio Error “No exports were found that match the constraint”

    清空Visual Studio 文件缓存目录 Just delete or rename this folder: %AppData%\..\Local\Microsoft\VisualStudio\ ...

  10. Delphi_09_Delphi_Object_Pascal_面向对象编程

    今天这里讨论一下Delphi中的面向对象编程,这里不做过多过细的讨论,主要做提纲挈领的描述,帮助自己抓做重点. 本随笔分为两部分: 一.面向对象编程 二.面向对象编程详细描述 ------------ ...