hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d)。
知识点:
线性筛求莫比乌斯反演函数:
void Init()
{
memset(vis,0,sizeof(vis));
mu[1] = 1;
cnt = 0;
for(int i=2; i<N; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -1;
}
for(int j=0; j<cnt&&i*prime[j]<N; j++)
{
vis[i*prime[j]] = 1;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
}
题解:
转化题意就是[1,n/k],[1,m/k]之间互质的数的个数。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=100000+10;
int u[N],prime[N];
bool vis[N]; void init()
{
memset(vis,0,sizeof(vis));
u[1] = 1;
int cnt = 0;
for(int i=2; i<N; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
u[i] = -1;
}
for(int j=0; j<cnt&&i*prime[j]<N; j++)
{
vis[i*prime[j]] = 1;
if(i%prime[j]) u[i*prime[j]] = -u[i];
else
{
u[i*prime[j]] = 0;
break;
}
}
}
}
int main()
{
init();
int t;
cin>>t;
int a,b,c,d,k;
for(int kase=1;kase<=t;kase++)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==0)
{
printf("Case %d: 0\n",kase);
continue;
}
long long ans=0;
int ma=max(b,d),mi=min(b,d);
for(int i=k;i<=mi;i+=k)
{
ans+=(long long)u[i/k]*((ma/i)*2-(mi/i)+1)*(mi/i)/2;
}
printf("Case %d: %I64d\n",kase,ans);
}
return 0;
}
GCD
Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
hdu1695 GCD(莫比乌斯反演)的更多相关文章
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对
/** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- hdu1695(莫比乌斯反演)
传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
随机推荐
- lua解析赋值类型代码的过程
我们来看看lua vm在解析下面源码并生成bytecode时的整个过程: foo = "bar" local a, b = "a", "b" ...
- 带搜索的ComboBox
带搜索的ComboBox就是给ComboBox一个依赖属性的ItemSource,然后通过数据源中是否包含要查询的值,重新给ComboBox绑定数据源. public class EditComboB ...
- ElasticSearch 5学习(3)——单台服务器部署多个节点
一般情况下单台服务器只会部署一个ElasticSearch node,但是在学习过程中,很多情况下会需要实现ElasticSearch的分布式效果,所以需要启动多个节点,但是学习开发环境(不想开多个虚 ...
- ASP.NET MVC5+EF6+EasyUI 后台管理系统(51)-系统升级
系统很久没有更新内容了,期待已久的更新在今天发布了,最近花了2个月的时间每天一点点,从原有系统 MVC4+EF5+UNITY2.X+Quartz 2.0+easyui 1.3.4无缝接入 MVC5+E ...
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
- 微信开发之Ngrok环境准备
一.为什么要使用ngrok? 各位肯定都知道,做微信开发,我们的开发服务器需要和微信服务器做交互,SO,我们需要准备一台放置在公网的服务器,能够使得我们的服务器可以正常访问微信服务器,并且微信服务器也 ...
- .Net语言 APP开发平台——Smobiler学习日志:快速实现手机上的图片上传功能
最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的"S ...
- PostgreSQL介绍以及如何开发框架中使用PostgreSQL数据库
最近准备下PostgreSQL数据库开发的相关知识,本文把总结的PPT内容通过博客记录分享,本随笔的主要内容是介绍PostgreSQL数据库的基础信息,以及如何在我们的开发框架中使用PostgreSQ ...
- ASP.NET Core MVC TagHelper实践HighchartsNET快速图表控件-开源
ASP.NET Core MVC TagHelper最佳实践HighchartsNET快速图表控件支持ASP.NET Core. 曾经在WebForms上写过 HighchartsNET快速图表控件- ...
- python之最强王者(10)———文件(File)、输入输出的基本操作
1. Python 文件I/O 本章只讲述所有基本的的I/O函数,更多函数请参考Python标准文档. 2.打印到屏幕 最简单的输出方法是用print语句,你可以给它传递零个或多个用逗号隔开的表达式. ...