次方求模

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述

求a的b次方对c取余的值

 
输入
第一行输入一个整数n表示测试数据的组数(n<100)
每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000)
输出
输出a的b次方对c取余之后的结果
样例输入
3
2 3 5
3 100 10
11 12345 12345
样例输出
3
1
10481
 /*
     Name: NYOJ--102--次方求模
     Copyright: ©2017 日天大帝
     Author: 日天大帝
     Date: 28/04/17 20:31
     Description: 快速求幂取模
 */
 #include<iostream>
 using namespace std;
 const int MAX = 1e8;
 int pow(long long int n,long long int p,long long int c) {
     ;
     ){
         )
             m = ((m%c) * (n%c)) %c;
         n = ((n%c)*(n%c)) %c;
         p = p>>;
     }
     return m;
 }
 int main(){
     ios::sync_with_stdio(false);
     int n;cin>>n;
     while(n--)    {
         int a,b,c;
         cin>>a>>b>>c;
         cout<<pow(a,b,c)<<endl;
     }
     ;
 }

公式求幂→二分求幂→快速求幂→快速求幂取模

直接用C语言的库函数pow()(别忘了它的头文件#include<math.h>),似乎很简单,但是它的时间复杂度高达O(n)。 
显然,这很容易超时。 
于是有了下面的二分求幂(时间复杂度O(lgn))

二分求幂的原理可以用下面这张图表示 

用递归来实现,虽然代码有点长,但是很好理解

 1 int pow(int a,int n)//返回值是a的n次方
 2 {
 3     if(n==0)//递归终止条件
 4         return 1;
 5     if(n==1)
 6         return a;
 7     int result=pow(a,n/2);//二分递归
 8     result=result*result;//这部分奇数偶数都一样
 9     if(n%2==1)//如果n是奇数,就要多乘一次
10         result=result*a;
11     return result;
12 }

用非递归,更加简洁

 1 int pow(int a,int n)//返回值是a的n次方
 2 {
 3     int result=1;
 4     while(n!=0)
 5     {
 6         if(n%2==1)//如果n是奇数
 7             result=result*a;//就要多乘一次
 8         a=a*a;
 9         n=n/2;//二分
10     }
11     return result;
12 }

快速幂顾名思义比二分幂又快一些, 
快速幂借助了强大的位运算,时间复杂度达到O(log₂N)。 
用非递归的代码实现

 1 int pow(int a,int n)//返回值是a的n次方
 2 {
 3     int result=1,flag=a;
 4     while(n!=0)
 5     {
 6         if(n&1)//如果n是奇数,即n的二进制最末位为1时
 7             result=result*flag;
 8         flag=flag*flag;
 9         n=n>>1;//n的二进制右移一位,即n/2
10     }
11     return result;
12 }

当然还能用递归来实现,但是太复杂,我没学会…

刷题中让直接求幂的不多,求幂后取模的却不少,毕竟求幂结果太大了。 
水平所限,只会用二分幂取模,时间复杂度与二分幂一样O(lgn)。 
基本可以在各种比赛中顺利通过,也是目前比较常用的方法

原理同样很简单,都是小学学过的:积的取余等于取余的积取余 
接下来用代码实现

 1 int pow(int a,int n,int b)//返回值是a的n次方对b取余后的值
 2 {
 3     int result=1;
 4     a=a%b;//积的取余等于取余的积取余
 5     while(n>0)
 6     {
 7         if(n%2==1)
 8             result=result*a%b;//n是奇数的话就要多乘一次,原理和前面的二分求幂一样
 9         n=n/2;//二分
10         a=a*a%b;//积的取余等于取余的积取余
11     }
12     return result;
13 }

影响计算机效率的是运算次数,而不是运算结果。 
所以前面几个算法都是通过增大运算结果,减少运算次数,提高计算机效率。

NYOJ--102--次方求模(快速求幂取模)的更多相关文章

  1. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  2. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  3. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  4. HDU1013,1163 ,2035九余数定理 快速幂取模

    1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...

  5. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  6. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  7. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  8. HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模

    小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

  9. CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模

    很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...

随机推荐

  1. docker私有库搭建过程(Registry)

    实验环境: CentOS7 1611 Docker 1.12.6 registry   2.0 1.安装并运行registry 安装: [root@docker01 ~]# docker pull r ...

  2. jquery让页面滚动到底部

    function scrollToEnd(){//滚动到底部 var h = $(document).height()-$(window).height(); $(document).scrollTo ...

  3. PHP提取字符串中的所有汉字

    <?php $str = 'aiezu.com 爱E族, baidu.com 百度'; preg_match_all("#[\x{4e00}-\x{9fa5}]#u", $s ...

  4. Spring Boot1.5.4 AOP实例

    原文:https://github.com/x113773/testall/issues/12 1. 还是首先添加依赖(使用当前springboot的默认版本)```<dependency> ...

  5. SharePoint 2013 安装

    步骤 1:打开提升的 SharePoint 2013 命令行管理程序 选择与您的服务器操作系统对应的过程. 在 Windows Server 2008 R2 中 单击“开始”>“所有程序”> ...

  6. 详解Linux chgrp和chown命令的用法

    Linux chgrp和chown命令是管理员的常用命令,对于初学Linux系统管理的人来说,这对Linux chgrp和chown命令具体的用法这里做一介绍. Linux chgrp命令 功能:改变 ...

  7. ArrayList源码浅析(jdk1.8)

    ArrayList的实质就是动态数组.所以可以通过下标准确的找到目标元素,因此查找的效率高.但是添加或删除元素会涉及到大量元素的位置移动,所以效率低. 一.构造方法 ArrayList提供了3个构造方 ...

  8. Java8 in action(1) 通过行为参数化传递代码--lambda代替策略模式

    [TOC] 猪脚:以下内容参考<Java 8 in Action> 需求 果农需要筛选苹果,可能想要绿色的,也可能想要红色的,可能想要大苹果(>150g),也可能需要红的大苹果.基于 ...

  9. [AOP系列]Autofac+Castle实现AOP事务

    一.前言 最近公司新项目,需要搭架构进行开发,其中需要保证事务的一致性,经过一番查找,发现很多博文都是通过Spring.Net.Unity.PostSharp.Castle Windsor这些方式实现 ...

  10. 字典的定义和操作 (Python)

    字典是由key and value 构成,无序结构(不想列表那样有固体位置): note:key 是唯一的,没有重复: 字典可以多级嵌套: 定义: dict1 = { # 由等式构成 dict = { ...