NYOJ--102--次方求模(快速求幂取模)
次方求模
- 描述
-
求a的b次方对c取余的值
- 输入
- 第一行输入一个整数n表示测试数据的组数(n<100)
每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) - 输出
- 输出a的b次方对c取余之后的结果
- 样例输入
-
3 2 3 5 3 100 10 11 12345 12345
- 样例输出
-
3 1 10481
/*
Name: NYOJ--102--次方求模
Copyright: ©2017 日天大帝
Author: 日天大帝
Date: 28/04/17 20:31
Description: 快速求幂取模
*/
#include<iostream>
using namespace std;
const int MAX = 1e8;
int pow(long long int n,long long int p,long long int c) {
;
){
)
m = ((m%c) * (n%c)) %c;
n = ((n%c)*(n%c)) %c;
p = p>>;
}
return m;
}
int main(){
ios::sync_with_stdio(false);
int n;cin>>n;
while(n--) {
int a,b,c;
cin>>a>>b>>c;
cout<<pow(a,b,c)<<endl;
}
;
}
公式求幂→二分求幂→快速求幂→快速求幂取模
直接用C语言的库函数pow()(别忘了它的头文件#include<math.h>),似乎很简单,但是它的时间复杂度高达O(n)。
显然,这很容易超时。
于是有了下面的二分求幂(时间复杂度O(lgn))
二分求幂的原理可以用下面这张图表示
用递归来实现,虽然代码有点长,但是很好理解
1 int pow(int a,int n)//返回值是a的n次方
2 {
3 if(n==0)//递归终止条件
4 return 1;
5 if(n==1)
6 return a;
7 int result=pow(a,n/2);//二分递归
8 result=result*result;//这部分奇数偶数都一样
9 if(n%2==1)//如果n是奇数,就要多乘一次
10 result=result*a;
11 return result;
12 }
用非递归,更加简洁
1 int pow(int a,int n)//返回值是a的n次方
2 {
3 int result=1;
4 while(n!=0)
5 {
6 if(n%2==1)//如果n是奇数
7 result=result*a;//就要多乘一次
8 a=a*a;
9 n=n/2;//二分
10 }
11 return result;
12 }
快速幂顾名思义比二分幂又快一些,
快速幂借助了强大的位运算,时间复杂度达到O(log₂N)。
用非递归的代码实现
1 int pow(int a,int n)//返回值是a的n次方
2 {
3 int result=1,flag=a;
4 while(n!=0)
5 {
6 if(n&1)//如果n是奇数,即n的二进制最末位为1时
7 result=result*flag;
8 flag=flag*flag;
9 n=n>>1;//n的二进制右移一位,即n/2
10 }
11 return result;
12 }
当然还能用递归来实现,但是太复杂,我没学会…
刷题中让直接求幂的不多,求幂后取模的却不少,毕竟求幂结果太大了。
水平所限,只会用二分幂取模,时间复杂度与二分幂一样O(lgn)。
基本可以在各种比赛中顺利通过,也是目前比较常用的方法
原理同样很简单,都是小学学过的:积的取余等于取余的积取余
接下来用代码实现
1 int pow(int a,int n,int b)//返回值是a的n次方对b取余后的值
2 {
3 int result=1;
4 a=a%b;//积的取余等于取余的积取余
5 while(n>0)
6 {
7 if(n%2==1)
8 result=result*a%b;//n是奇数的话就要多乘一次,原理和前面的二分求幂一样
9 n=n/2;//二分
10 a=a*a%b;//积的取余等于取余的积取余
11 }
12 return result;
13 }
影响计算机效率的是运算次数,而不是运算结果。
所以前面几个算法都是通过增大运算结果,减少运算次数,提高计算机效率。
NYOJ--102--次方求模(快速求幂取模)的更多相关文章
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元
题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...
- HDU1013,1163 ,2035九余数定理 快速幂取模
1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
- HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模
小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) To ...
- CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...
随机推荐
- LogMiner的使用
LogMiner是用于Oracle日志挖掘的利器. 百科解释: LogMiner 是Oracle公司从产品8i以后提供的一个实际非常有用的分析工具,使用该工具可以轻松获得Oracle 重做日志文件(归 ...
- SQL检测开始日期 结束日期 是否存在交叉
检测开始日期 结束日期 是否存在交叉 "+tj+" and ((starttime>="+starttime+" and starttime<=&q ...
- SOD开源框架MSF(消息服务框架)介绍
前言:之前想做消息的广播,拖着就忘记了,现在拿了医生的框架来学习,就按实现了之前想实现的功能. 传送门http://www.cnblogs.com/bluedoctor/,框架的获取,按传送门的链接就 ...
- Mac用ssh登录Ubuntu14.04
在Ubuntu上配置ssh-server sudo apt-get install openssh-server 然后确认ssh-server是否启动 ps -e | grep ssh 如果存在s ...
- java中方法的定义
所谓的方法(将方法称为函数)指的就是一段可以被重复调用的代码块. 对于方法的返回值类型有两种使用形式: · 有数据返回:返回值类型就使用 Java 中定义的数据类型: · 无数据返回:使用 void ...
- (转载)oracle 在一个存储过程中调用另一个返回游标的存储过程
原文链接:http://www.jb51.net/article/20160.htm 实际项目当中经常需要在一个存储过程中调用另一个存储过程返回的游标,本文列举了两种情况讲述具体的操作方法. 第一种情 ...
- java基础之集合框架(1)
一.介绍Collection 1.概念:Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素(Elements).一些Collection ...
- 基于vue2.0的一个豆瓣电影App
1.搭建项目框架 使用vue-cli 没安装的需要先安装 npm intall -g vue-cli 使用vue-cli生成项目框架 vue init webpack-simple vue-movie ...
- 基于封装通用的EF CRUD 的操作
1. Entity Framework是Microsoft的ORM框架,随着 Entity Framework 不断的完善强化已经到达了EF 6.0+ 还是非常的完善的,目前使用的比例相对于其他OR ...
- Maven入门1-在Eclipse中新建Maven Web项目
在eclipse中新建Maven Web项目 很多时候开发效率低下,大部分原因是IDE环境不熟悉.配置不会配置:因此在学习一项技能之前,有必要对基本的环境配置有所了解,正所谓磨刀不误砍柴工.这篇文章主 ...