传统的关系数据库一般由数据库(database)、表(table)、记录(record)三个层次概念组成,MongoDB是由数据库(database)、集合(collection)、文档对象(document)三个层次组成。MongoDB对于关系型数据库里的表,但是集合中没有列、行和关系概念,这体现了模式自由的特点。

MySQL

MongoDB

说明

mysqld

mongod

服务器守护进程

mysql

mongo

客户端工具

mysqldump

mongodump

逻辑备份工具

mysql

mongorestore

逻辑恢复工具

 

db.repairDatabase()

修复数据库

mysqldump

mongoexport

数据导出工具

source

mongoimport

数据导入工具

grant * privileges on *.* to …

Db.addUser()

Db.auth()

新建用户并权限

show databases

show dbs

显示库列表

Show tables

Show collections

显示表列表

Show slave status

Rs.status

查询主从状态

Create table users(a int, b int)

db.createCollection("mycoll", {capped:true,

size:100000}) 另:可隐式创建表。

创建表

Create INDEX idxname ON users(name)

db.users.ensureIndex({name:1})

创建索引

Create INDEX idxname ON users(name,ts DESC)

db.users.ensureIndex({name:1,ts:-1})

创建索引

Insert into users values(1, 1)

db.users.insert({a:1, b:1})

插入记录

Select a, b from users

db.users.find({},{a:1, b:1})

查询表

Select * from users

db.users.find()

查询表

Select * from users where age=33

db.users.find({age:33})

条件查询

Select a, b from users where age=33

db.users.find({age:33},{a:1, b:1})

条件查询

select * from users where age<33

db.users.find({'age':{$lt:33}})

条件查询

select * from users where age>33 and age<=40

db.users.find({'age':{$gt:33,$lte:40}})

条件查询

select * from users where a=1 and b='q'

db.users.find({a:1,b:'q'})

条件查询

select * from users where a=1 or b=2

db.users.find( { $or : [ { a : 1 } , { b : 2 } ] } )

条件查询

select * from users limit 1

db.users.findOne()

条件查询

select * from users where name like "%Joe%"

db.users.find({name:/Joe/})

模糊查询

select * from users where name like "Joe%"

db.users.find({name:/^Joe/})

模糊查询

select count(1) from users

Db.users.count()

获取表记录数

select count(1) from users where age>30

db.users.find({age: {'$gt': 30}}).count()

获取表记录数

select DISTINCT last_name from users

db.users.distinct('last_name')

去掉重复值

select * from users ORDER BY name

db.users.find().sort({name:-1})

排序

select * from users ORDER BY name DESC

db.users.find().sort({name:-1})

排序

EXPLAIN select * from users where z=3

db.users.find({z:3}).explain()

获取存储路径

update users set a=1 where b='q'

db.users.update({b:'q'}, {$set:{a:1}}, false, true)

更新记录

update users set a=a+2 where b='q'

db.users.update({b:'q'}, {$inc:{a:2}}, false, true)

更新记录

delete from users where z="abc"

db.users.remove({z:'abc'})

删除记录

 

db. users.remove()

删除所有的记录

drop database IF EXISTS test;

use test

db.dropDatabase()

删除数据库

drop table IF EXISTS test;

db.mytable.drop()

删除表/collection

 

db.addUser(‘test', 'test')

添加用户

readOnly-->false

 

db.addUser(‘test', 'test', true)

添加用户

readOnly-->true

 

db.addUser("test","test222")

更改密码

 

db.system.users.remove({user:"test"})

或者db.removeUser('test')

删除用户

 

use admin

超级用户

 

db.auth(‘test', ‘test')

用户授权

 

db.system.users.find()

查看用户列表

 

show users

查看所有用户

 

db.printCollectionStats()

查看各collection的状态

 

db.printReplicationInfo()

查看主从复制状态

 

show profile

查看profiling

 

db.copyDatabase('mail_addr','mail_addr_tmp')

拷贝数据库

 

db.users.dataSize()

查看collection数据的大小

 

db. users.totalIndexSize()

查询索引的大小

mongodb语法
MongoDB的好处挺多的,比如多列索引,查询时可以用一些统计函数,支持多条件查询,但是目前多表查询是不支持的,可以想办法通过数据冗余来解决多表查询的问题。
MongoDB对数据的操作很丰富,下面做一些举例说明,内容大部分来自官方文档,另外有部分为自己理解。

查询colls所有数据
db.colls.find() //select * from colls
通过指定条件查询
db.colls.find({‘last_name': ‘Smith'});//select * from colls where last_name='Smith'
指定多条件查询
db.colls.find( { x : 3, y : “foo” } );//select * from colls where x=3 and y='foo'

指定条件范围查询
db.colls.find({j: {$ne: 3}, k: {$gt: 10} });//select * from colls where j!=3 and k>10

查询不包括某内容
db.colls.find({}, {a:0});//查询除a为0外的所有数据

支持<, <=, >, >=查询,需用符号替代分别为$lt,$lte,$gt,$gte
db.colls.find({ “field” : { $gt: value } } );
db.colls.find({ “field” : { $lt: value } } );
db.colls.find({ “field” : { $gte: value } } );
db.colls.find({ “field” : { $lte: value } } );

也可对某一字段做范围查询
db.colls.find({ “field” : { $gt: value1, $lt: value2 } } );

不等于查询用字符$ne
db.colls.find( { x : { $ne : 3 } } );

in查询用字符$in
db.colls.find( { “field” : { $in : array } } );
db.colls.find({j:{$in: [2,4,6]}});

not in查询用字符$nin
db.colls.find({j:{$nin: [2,4,6]}});

取模查询用字符$mod
db.colls.find( { a : { $mod : [ 10 , 1 ] } } )// where a % 10 == 1

$all查询
db.colls.find( { a: { $all: [ 2, 3 ] } } );//指定a满足数组中任意值时

$size查询
db.colls.find( { a : { $size: 1 } } );//对对象的数量查询,此查询查询a的子对象数目为1的记录

$exists查询
db.colls.find( { a : { $exists : true } } ); // 存在a对象的数据
db.colls.find( { a : { $exists : false } } ); // 不存在a对象的数据

$type查询$type值为bsonhttp://bsonspec.org/数 据的类型值
db.colls.find( { a : { $type : 2 } } ); // 匹配a为string类型数据
db.colls.find( { a : { $type : 16 } } ); // 匹配a为int类型数据

使用正则表达式匹配
db.colls.find( { name : /acme.*corp/i } );//类似于SQL中like

内嵌对象查询
db.colls.find( { “author.name” : “joe” } );

1.3.3版本及更高版本包含$not查询
db.colls.find( { name : { $not : /acme.*corp/i } } );
db.colls.find( { a : { $not : { $mod : [ 10 , 1 ] } } } );

sort()排序
db.colls.find().sort( { ts : -1 } );//1为升序2为降序

limit()对限制查询数据返回个数
db.colls.find().limit(10)

skip()跳过某些数据
db.colls.find().skip(10)

snapshot()快照保证没有重复数据返回或对象丢失

count()统计查询对象个数
db.students.find({‘address.state' : ‘CA'}).count();//效率较高
db.students.find({‘address.state' : ‘CA'}).toArray().length;//效率很低

group()对查询结果分组和SQL中group by函数类似
distinct()返回不重复值

==========

由于公司系统使用MongoDB,虽然之前了解,但并没有深入学习MongoDB。见此机会,参考《MongoDB 权威指南》深入学习,结合对比MySQL,加深对两种不同数据库的理解。特把学习过程记录和大家分享。

一、 表结构对比

表结构对比 MongoDB MySQL
collections tables
documents rows
主键 _id id 与业务无关的值作为主键。如果没有显式地在表定义时指定主键,InnoDB存储引擎会为每一行生成一个6字节的ROWID
主键生成策略 24位的字符串(time + machine + pid + inc),自己指定 UUID, 自增
面向Documents数据库 T F
面向行数据库 F T
约束 主键约束,外键约束

二、 数据类型对比

数据类型对比 MongoDB MySQL
整形 NumberInt("3"),NumberLong("3") TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT
浮点 默认使用64位浮点型数值 FLOAT, DOUBLE, DECIMAL
字符 utf8 字符串 VARCHAR, CHAR
日期/时间 new Date(), 自新纪元依赖经过的毫秒数,不存储时区 DATE, DATETIME, TIMESTAMP
NULL null 不支持(null与null不相等)
布尔类型 true/false 不支持
正则表达式 支持 { "x" : /foobar/i } 不支持
数组 支持 { "x" : ["a", "b", "c"]} 不支持
二进制数据 支持 GridFS BLOB, TEXT
代码片段 { "x" : function() { /... / } } 不支持

三、 SHELL终端对比

对比项 MongoDB MySQL
启动 mongo mysql -u root -p
查看库 show dbs show databases
使用库 use test use test
查看表 show collections show tables

四、 查询对比

查询对比 MongoDB MySQL
检索单列 db.users.find({ "age" : 27 }) SELECT * FROM users WHERE age = 27;
检索多列 db.users.find({ "age" : 27, "username" : "joe" }) SELECT * FROM users WHERE age = 27 and username = 'joe';
指定需要返回的键 db.users.find({}, { "username" : 1, "email" : 1 }) SELECT username, email FROM users;
范围检索 db.users.find({"age" : { "$gte" : 18, "$lte" : 30 }}) $lt, $lte, $gt, $gte 分别对应 <, <=, >, >= SELECT * FROM users WHERE age >= 18 AND age <=30;
不匹配检索 db.users.find({ "username" : { "$ne" : "joe" } }) SELECT * FROM users WHERE username <> 'joe';
IN 操作符 db.raffle.find({ "ticket_no" : { "$in" : [725, 542, 390] } }) $in非常灵活,可以指定不同类型 的条件和值。 例如在逐步将用户的ID号迁移成用户名的过程中, 查询时需要同时匹配ID和用户名 SELECT ticket_no FROM raffles WHERE ticket_no IN (725, 542, 390);
NOT IN 操作符 db.raffle.find({ "ticket_no" : { "$nin" : [725, 542, 390] } }) SELECT * FROM raffles WHERE ticket_no not in (725, 542, 390);
OR 操作符 db.raffle.find({ "$or" : [{ "ticket_no" : 725 }, { "winner" : true }] }) SELECT * FROM raffles WHERE ticket_no = 725 OR winner = 'true';
空值检查 db.c.find({"y" : null}) null不仅会匹配某个键的值为null的文档 ,而且还会匹配不包含这个键的文档。 所以,这种匹配还会返回缺少这个键的所有文档。 如果 仅想要匹配键值为null的文档, 既要检查改建的值是否为null, 还要通过 $exists 条件 判定键值已经存在 db.c.find({ "z" : { "$in" : [null], "$exists" : true }}) SELECT * FROM cs WHERE z is null;
多列排序 db.c.find().sort({ username : 1, age: -1 }) SELECT * FROM cs ORDER BY username ASC, age DESC;
AND操作符 db.users.find({ "$and" : [{ "x" : { "$lt" : 1 }, { "x" : 4 } }] }) 由于查询优化器不会对 $and进行优化, 所以可以改写成下面的 db.users.find({ "x" : { "$lt" : 1, "$in" : [4] } }) SELECT * FROM users WHERE x > 1 AND x IN (4);
NOT 操作符 db.users.find({ "id_num" : { "$not" : { "$mod" : [5,1] } } }) SELECT * FROM users WHERE id_num NOT IN (5,1);
LIKE 操作符(正则匹配) db.blogs.find( { "title" : /post?/i } ) MongoDB 使用Perl兼容的正则表达式(PCRE) 库来匹配正则表达式, 任何PCRE支持表达式的正则表达式语法都能被MongoDB接受 SELECT * FROM blogs WHERE title LIKE "post%";

五、 函数对比

{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2 }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1 }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5 }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10 }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10 }
函数对比 MongoDB MySQL
COUNT db.foo.count() SELECT COUNT(id) FROM foo;
DISTINCT db.runCommand({ "distinct": "people", "key": "age" }) SELECT DISTINCT(age) FROM people;
MIN db.sales.aggregate( [ { $group: { _id: {}, minQuantity: { $min: "$quantity" } } } ]); 结果: { "_id" : { }, "minQuantity" : 1 } SELECT MIN(quantity) FROM sales;
MAX db.sales.aggregate( [ { $group: { _id: {}, maxQuantity: { $max: "$quantity" } } } ]); SELECT MAX(quantity) FROM sales;
AVG db.sales.aggregate( [ { $group: { _id: {}, avgQuantity: { $avg: "$quantity" } } } ]); SELECT AVG(quantity) FROM sales;
SUM db.sales.aggregate( [ { $group: { _id: {}, totalPrice: { $sum: "$price" } } } ]); SELECT SUM(price) FROM sales;

六、 CURD 对比

CURD 对比 MongoDB MySQL
插入数据 post = {"title" : "My Blog Post", "content" : "Here`s my blog post"}; db.blog.insert(post) 如果blog 这个集合不存在,则会创建 INSERT INTO blogs(title, blog_content) VALUES ('My Blog Post', 'Here`s my blog post.')
批量插入 db.blog.batchInsert([{ "title" : "AAA", "content" : "AAA---" }, { "title" : "BBB", "content" : "JJJJ--" }]) 当前版本的MongoDB能接受最大消息长度48MB, 所以在一次批量插入中能插入的文档是有限制的。 并且在执行批量插入的过程中,有一个文档插入失败, 那么在这个文档之前的所有文档都会成功插入到集合中, 而这个文档以及之后的所有文档全部插入失败。 INSERT INTO blogs(title, blog_content) VALUES('AAA', 'AAA---'), ('BBB', 'BBB---');
查询数据 db.blog.find(); db.blog.findOne(); SELECT * FROM blogs; SELECT * FROM blogs LIMIT 1;
更新旧数据 post.blog_content = "十一"; db.blog.update({title: "My Blog Post"}, post) UPDATE set blog_content = "十一" WHERE title = "My Blog Post";
更新新增COLUMN post.comments = "very good"; db.blog.update({title : "My Blog Post"}, post) ALTER table blogs ADD COLUMN comments varchar(200); UPDATE blogs set comments = "very good" WHERE title = 'My Blog Post';
删除数据 db.blog.remove({ title : "My Blog Post" }) DELETE FROM blogs WHERE title = 'My Blog Post'
校验 post.blog_visit = 123; db.blog.update({title : "My Blog Post"}, post); post.blog_visit = "asd.123aaa"; db.blog.update({title : "My Blog Post"}, post) 插入的时候,检查大小。所有的文档都必须小于16MB。 这样做的目的是为了防止不良的模式设计,并且保持性能一直。由于MongoDB只进行最基本的检查,所以插入非法的数据很容易。 类型校验,长度校验。 ALTER table blogs ADD COLUMN blog_visit INT(10); UPDATE blogs SET blog_visit = "asdasd" WHERE id = 1; ERROR 1366 (HY000): Incorrect integer value: 'asdasd' for column 'blog_visit' at row 1
删除表 db.blog.remove({}), db.blog.drop() DELETE from blogs; drop table blogs;

mongodb与mysql命令详细对比的更多相关文章

  1. mongodb与mysql命令对比

    mongodb与mysql命令对比 传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由数据库(database).集合(col ...

  2. mongodb与mysql的命令对比

    mongodb与mysql命令对比 传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由数据库(database).集合(col ...

  3. MongoDB和MySQL的区别

    http://www.cnblogs.com/caihuafeng/p/5494336.html MongoDB(文档型数据库):提供可扩展的高性能数据存储 一. 1.基于分布式文件存储 2.高负载情 ...

  4. mongodb,redis,mysql的区别和具体应用场景

    一.MySQL 关系型数据库. 在不同的引擎上有不同 的存储方式. 查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高. 开源数据库的份额在不断增加,mysql的份额页在持续增长. 缺点就 ...

  5. Mongodb与mysql语法比较

    Mongodb与mysql语法比较   mongodb与mysql命令对比 传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由 ...

  6. mongodb,redis,mysql的区别和具体应用场景(转)

    一.MySQL 关系型数据库. 在不同的引擎上有不同 的存储方式. 查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高. 开源数据库的份额在不断增加,mysql的份额页在持续增长. 缺点就 ...

  7. MySQL与Oracle的语法区别详细对比

    MySQL与Oracle的语法区别详细对比 Oracle和mysql的一些简单命令对比在本文中将会涉及到很多的实例,感兴趣的你不妨学习一下,就当巩固自己的知识了   Oracle和mysql的一些简单 ...

  8. MongoDB与Mysql常用命令解释

    原文 本文旨在介绍MongoDB,Mysql的常用命令:将MongoDB 和传统的关系型数据库的常用命令对照起来学习,更加便于记忆和理解. MongoDB是由数据库(database/reposito ...

  9. Mysql常用命令 详细整理版

    Mysql常用命令 show databases; 显示数据库 create database name; 创建数据库 use databasename; 选择数据库 drop database na ...

随机推荐

  1. 压力测试+接口测试(工具jmeter)

      jmeter是apache公司基于java开发的一款开源压力测试工具,体积小,功能全,使用方便,是一个比较轻量级的测试工具,使用起来非常简单.因 为jmeter是java开发的,所以运行的时候必须 ...

  2. python实现以application/json格式为请求体的http post请求

    接口传递数据格式类型为json格式,如下图抓包查看 Python实现脚本请求接口并以中文打印接口返回的数据 import json import requests url = "https: ...

  3. Java虚拟机JVM相关知识整理

    Java虚拟机JVM的作用: Java源文件(.java)通过编译器编译成.class文件,.class文件通过JVM中的解释器解释成特定机器上的机器代码,从而实现Java语言的跨平台. JVM的体系 ...

  4. mybatis_generator合并xml和Java

    之前写了合并xml的插件,今天改了改mybatis-generator源码,合并java和xml都改进去了. 先上图吧. 左边是一开始生成的,中间去掉author加了password字段和方法,右边重 ...

  5. html5(一)

    HTML5 三个基本特色:结构.样式.功能. <!DOCTYPE html ><html lang="en"><head> <meta c ...

  6. node.js面试题大全-侧重后端应用与对Node核心的理解

    Node是搞后端的,不应该被被归为前端,更不应该用前端的观点去理解,去面试node开发人员.所以这份面试题大全,更侧重后端应用与对Node核心的理解. github地址: https://github ...

  7. js 浏览器 宽高 各种

    常用: JS 获取浏览器窗口大小   // 获取窗口宽度   if (window.innerWidth)   winWidth = window.innerWidth;   else if ((do ...

  8. vscode plugins

    ├─ .obsolete├─ .wlck├─ .wtid├─ abeyuhang.vscode-lesslint-0.0.1├─ abierbaum.vscode-file-peek-1.0.1├─ ...

  9. static_assert enable_if 模板编译期检查

    conceptC++ http://www.generic-programming.org/faq/?category=conceptcxx Checking Concept Without Conc ...

  10. 线程基础:多任务处理——MESI协议以及带来的问题:伪共享

    1.概述 本文和后续文章将着眼CPU的工作原理阐述伪共享的解决方法和volatile关键字的应用. 2.复习CPU工作原理2.1.CPU工作原理要清楚理解本文后续内容,就需要首先重新概述一下JVM的内 ...