相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。

相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z=0平面上)。

相机标定的输出:摄像机的内参、外参系数。

标定流程

1. 准备标定图片

2. 对每一张标定图片,提取角点信息

3. 对每一张标定图片,进一步提取亚像素角点信息

4. 在棋盘标定图上绘制找到的内角点(非必须,仅为了显示)

5. 相机标定

6. 对标定结果进行评价

7. 查看标定效果——利用标定结果对棋盘图进行矫正

1. 准备标定图片

标定图片需要使用标定板在不同位置、不同角度、不同姿态下拍摄,最少需要3张,以10~20张为宜。标定板需要是黑白相间的矩形构成的棋盘图,制作精度要求较高,如下图所示:

2.对每一张标定图片,提取角点信息

需要使用findChessboardCorners函数提取角点,这里的角点专指的是标定板上的内角点,这些角点与标定板的边缘不接触。

findChessboardCorners函数原型:

//! finds checkerboard pattern of the specified size in the image
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize,
OutputArray corners,
int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );

第一个参数Image,传入拍摄的棋盘图Mat图像,必须是8位的灰度或者彩色图像;

第二个参数patternSize,每个棋盘图上内角点的行列数,一般情况下,行列数不要相同,便于后续标定程序识别标定板的方向

第三个参数corners,用于存储检测到的内角点图像坐标位置,一般用元素是Point2f的向量来表示:vector<Point2f> image_points_buf;

第四个参数flage:用于定义棋盘图上内角点查找的不同处理方式,有默认值。

3. 对每一张标定图片,进一步提取亚像素角点信息

为了提高标定精度,需要在初步提取的角点信息上进一步提取亚像素信息,降低相机标定偏差,常用的方法是cornerSubPix,另一个方法是使用find4QuadCornerSubpix函数,这个方法是专门用来获取棋盘图上内角点的精确位置的,或许在相机标定的这个特殊场合下它的检测精度会比cornerSubPix更高?

cornerSubPix函数原型:

//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
Size winSize, Size zeroZone,
TermCriteria criteria );

第一个参数image,输入的Mat矩阵,最好是8位灰度图像,检测效率更高;

第二个参数corners,初始的角点坐标向量,同时作为亚像素坐标位置的输出,所以需要是浮点型数据,一般用元素是Pointf2f/Point2d的向量来表示:vector<Point2f/Point2d> iamgePointsBuf;

第三个参数winSize,大小为搜索窗口的一半;

第四个参数zeroZone,死区的一半尺寸,死区为不对搜索区的中央位置做求和运算的区域。它是用来避免自相关矩阵出现某些可能的奇异性。当值为(-1,-1)时表示没有死区;

第五个参数criteria,定义求角点的迭代过程的终止条件,可以为迭代次数和角点精度两者的组合;

find4QuadCornerSubpix函数原型:

//! finds subpixel-accurate positions of the chessboard corners
CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);

第一个参数img,输入的Mat矩阵,最好是8位灰度图像,检测效率更高;

第二个参数corners,初始的角点坐标向量,同时作为亚像素坐标位置的输出,所以需要是浮点型数据,一般用元素是Pointf2f/Point2d的向量来表示:vector<Point2f/Point2d> iamgePointsBuf;

第三个参数region_size,角点搜索窗口的尺寸;

在其中一个标定的棋盘图上分别运行cornerSubPix和find4QuadCornerSubpix寻找亚像素角点,两者定位到的亚像素角点坐标分别为:

4. 在棋盘标定图上绘制找到的内角点(非必须,仅为了显示)

drawChessboardCorners函数用于绘制被成功标定的角点,函数原型:

//! draws the checkerboard pattern (found or partly found) in the image
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
InputArray corners, bool patternWasFound );

第一个参数image,8位灰度或者彩色图像;

第二个参数patternSize,每张标定棋盘上内角点的行列数;

第三个参数corners,初始的角点坐标向量,同时作为亚像素坐标位置的输出,所以需要是浮点型数据,一般用元素是Pointf2f/Point2d的向量来表示:vector<Point2f/Point2d> iamgePointsBuf;

第四个参数patternWasFound,标志位,用来指示定义的棋盘内角点是否被完整的探测到,true表示别完整的探测到,函数会用直线依次连接所有的内角点,作为一个整体,false表示有未被探测到的内角点,这时候函数会以(红色)圆圈标记处检测到的内角点;

5. 相机标定

获取到棋盘标定图的内角点图像坐标之后,就可以使用calibrateCamera函数进行标定,计算相机内参和外参系数,

calibrateCamera函数原型:

//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints,
Size imageSize,
CV_OUT InputOutputArray cameraMatrix,
CV_OUT InputOutputArray distCoeffs,
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
int flags=, TermCriteria criteria = TermCriteria(
TermCriteria::COUNT+TermCriteria::EPS, , DBL_EPSILON) );

第一个参数objectPoints,为世界坐标系中的三维点。在使用时,应该输入一个三维坐标点的向量的向量,即vector<vector<Point3f>> object_points。需要依据棋盘上单个黑白矩阵的大小,计算出(初始化)每一个内角点的世界坐标。

第二个参数imagePoints,为每一个内角点对应的图像坐标点。和objectPoints一样,应该输入vector<vector<Point2f>> image_points_seq形式的变量;

第三个参数imageSize,为图像的像素尺寸大小,在计算相机的内参和畸变矩阵时需要使用到该参数;

第四个参数cameraMatrix为相机的内参矩阵。输入一个Mat cameraMatrix即可,如Mat cameraMatrix=Mat(3,3,CV_32FC1,Scalar::all(0));

第五个参数distCoeffs为畸变矩阵。输入一个Mat distCoeffs=Mat(1,5,CV_32FC1,Scalar::all(0))即可;

第六个参数rvecs为旋转向量;应该输入一个Mat类型的vector,即vector<Mat>rvecs;

第七个参数tvecs为位移向量,和rvecs一样,应该为vector<Mat> tvecs;

第八个参数flags为标定时所采用的算法。有如下几个参数:

CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,在cameraMatrix矩阵中应该有fx,fy,u0,v0的估计值。否则的话,将初始化(u0,v0)图像的中心点,使用最小二乘估算出fx,fy。 
CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,光轴点将保持在中心或者某个输入的值。 
CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy将会被忽略。只有fx/fy的比值在计算中会被用到。 
CV_CALIB_ZERO_TANGENT_DIST:设定切向畸变参数(p1,p2)为零。 
CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变在优化中保持不变。 
CV_CALIB_RATIONAL_MODEL:计算k4,k5,k6三个畸变参数。如果没有设置,则只计算其它5个畸变参数。

第九个参数criteria是最优迭代终止条件设定。

在使用该函数进行标定运算之前,需要对棋盘上每一个内角点的空间坐标系的位置坐标进行初始化,标定的结果是生成相机的内参矩阵cameraMatrix、相机的5个畸变系数distCoeffs,另外每张图像都会生成属于自己的平移向量和旋转向量。

6. 对标定结果进行评价

对标定结果进行评价的方法是通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到空间三维点在图像上新的投影点的坐标,计算投影坐标和亚像素角点坐标之间的偏差,偏差越小,标定结果越好。

对空间三维坐标点进行反向投影的函数是projectPoints,函数原型是:

//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
InputArray rvec, InputArray tvec,
InputArray cameraMatrix, InputArray distCoeffs,
OutputArray imagePoints,
OutputArray jacobian=noArray(),
double aspectRatio= );

第一个参数objectPoints,为相机坐标系中的三维点坐标;

第二个参数rvec为旋转向量,每一张图像都有自己的选择向量;

第三个参数tvec为位移向量,每一张图像都有自己的平移向量;

第四个参数cameraMatrix为求得的相机的内参数矩阵;

第五个参数distCoeffs为相机的畸变矩阵;

第六个参数iamgePoints为每一个内角点对应的图像上的坐标点;

第七个参数jacobian是雅可比行列式;

第八个参数aspectRatio是跟相机传感器的感光单元有关的可选参数,如果设置为非0,则函数默认感光单元的dx/dy是固定的,会依此对雅可比矩阵进行调整;

7. 查看标定效果——利用标定结果对棋盘图进行矫正

利用求得的相机的内参和外参数据,可以对图像进行畸变的矫正,这里有两种方法可以达到矫正的目的,分别说明一下。

方法一:使用initUndistortRectifyMap和remap两个函数配合实现。

initUndistortRectifyMap用来计算畸变映射,remap把求得的映射应用到图像上。

initUndistortRectifyMap的函数原型:

//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
InputArray R, InputArray newCameraMatrix,
Size size, int m1type, OutputArray map1, OutputArray map2 );

第一个参数cameraMatrix为之前求得的相机的内参矩阵;

第二个参数distCoeffs为之前求得的相机畸变矩阵;

第三个参数R,可选的输入,是第一和第二相机坐标之间的旋转矩阵;

第四个参数newCameraMatrix,输入的校正后的3X3摄像机矩阵;

第五个参数size,摄像机采集的无失真的图像尺寸;

第六个参数m1type,定义map1的数据类型,可以是CV_32FC1或者CV_16SC2;

第七个参数map1和第八个参数map2,输出的X/Y坐标重映射参数;

remap函数原型:

//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
InputArray map1, InputArray map2,
int interpolation, int borderMode=BORDER_CONSTANT,
const Scalar& borderValue=Scalar());

第一个参数src,输入参数,代表畸变的原始图像;

第二个参数dst,矫正后的输出图像,跟输入图像具有相同的类型和大小;

第三个参数map1和第四个参数map2,X坐标和Y坐标的映射;

第五个参数interpolation,定义图像的插值方式;

第六个参数borderMode,定义边界填充方式;

方法二:使用undistort函数实现

undistort函数原型:

//! corrects lens distortion for the given camera matrix and distortion coefficients
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
InputArray cameraMatrix,
InputArray distCoeffs,
InputArray newCameraMatrix=noArray() );

第一个参数src,输入参数,代表畸变的原始图像;

第二个参数dst,矫正后的输出图像,跟输入图像具有相同的类型和大小;

第三个参数cameraMatrix为之前求得的相机的内参矩阵;

第四个参数distCoeffs为之前求得的相机畸变矩阵;

第五个参数newCameraMatrix,默认跟cameraMatrix保持一致;

方法一相比方法二执行效率更高一些,推荐使用。

完整代码

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream> using namespace cv;
using namespace std; void main()
{
ifstream fin("calibdata.txt"); /* 标定所用图像文件的路径 */
ofstream fout("caliberation_result.txt"); /* 保存标定结果的文件 */
//读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
cout<<"开始提取角点………………";
int image_count=; /* 图像数量 */
Size image_size; /* 图像的尺寸 */
Size board_size = Size(,); /* 标定板上每行、列的角点数 */
vector<Point2f> image_points_buf; /* 缓存每幅图像上检测到的角点 */
vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
string filename;
int count= - ;//用于存储角点个数。
while (getline(fin,filename))
{
image_count++;
// 用于观察检验输出
cout<<"image_count = "<<image_count<<endl;
/* 输出检验*/
cout<<"-->count = "<<count;
Mat imageInput=imread(filename);
if (image_count == ) //读入第一张图片时获取图像宽高信息
{
image_size.width = imageInput.cols;
image_size.height =imageInput.rows;
cout<<"image_size.width = "<<image_size.width<<endl;
cout<<"image_size.height = "<<image_size.height<<endl;
} /* 提取角点 */
if ( == findChessboardCorners(imageInput,board_size,image_points_buf))
{
cout<<"can not find chessboard corners!\n"; //找不到角点
exit();
}
else
{
Mat view_gray;
cvtColor(imageInput,view_gray,CV_RGB2GRAY);
/* 亚像素精确化 */
find4QuadCornerSubpix(view_gray,image_points_buf,Size(,)); //对粗提取的角点进行精确化
image_points_seq.push_back(image_points_buf); //保存亚像素角点
/* 在图像上显示角点位置 */
drawChessboardCorners(view_gray,board_size,image_points_buf,true); //用于在图片中标记角点
imshow("Camera Calibration",view_gray);//显示图片
waitKey();//暂停0.5S
}
}
int total = image_points_seq.size();
cout<<"total = "<<total<<endl;
int CornerNum=board_size.width*board_size.height; //每张图片上总的角点数
for (int ii= ; ii<total ;ii++)
{
if ( == ii%CornerNum)// 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看
{
int i = -;
i = ii/CornerNum;
int j=i+;
cout<<"--> 第 "<<j <<"图片的数据 --> : "<<endl;
}
if ( == ii%) // 此判断语句,格式化输出,便于控制台查看
{
cout<<endl;
}
else
{
cout.width();
}
//输出所有的角点
cout<<" -->"<<image_points_seq[ii][].x;
cout<<" -->"<<image_points_seq[ii][].y;
}
cout<<"角点提取完成!\n"; //以下是摄像机标定
cout<<"开始标定………………";
/*棋盘三维信息*/
Size square_size = Size(,); /* 实际测量得到的标定板上每个棋盘格的大小 */
vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
/*内外参数*/
Mat cameraMatrix=Mat(,,CV_32FC1,Scalar::all()); /* 摄像机内参数矩阵 */
vector<int> point_counts; // 每幅图像中角点的数量
Mat distCoeffs=Mat(,,CV_32FC1,Scalar::all()); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
vector<Mat> tvecsMat; /* 每幅图像的旋转向量 */
vector<Mat> rvecsMat; /* 每幅图像的平移向量 */
/* 初始化标定板上角点的三维坐标 */
int i,j,t;
for (t=;t<image_count;t++)
{
vector<Point3f> tempPointSet;
for (i=;i<board_size.height;i++)
{
for (j=;j<board_size.width;j++)
{
Point3f realPoint;
/* 假设标定板放在世界坐标系中z=0的平面上 */
realPoint.x = i*square_size.width;
realPoint.y = j*square_size.height;
realPoint.z = ;
tempPointSet.push_back(realPoint);
}
}
object_points.push_back(tempPointSet);
}
/* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
for (i=;i<image_count;i++)
{
point_counts.push_back(board_size.width*board_size.height);
}
/* 开始标定 */
calibrateCamera(object_points,image_points_seq,image_size,cameraMatrix,distCoeffs,rvecsMat,tvecsMat,);
cout<<"标定完成!\n";
//对标定结果进行评价
cout<<"开始评价标定结果………………\n";
double total_err = 0.0; /* 所有图像的平均误差的总和 */
double err = 0.0; /* 每幅图像的平均误差 */
vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
cout<<"\t每幅图像的标定误差:\n";
fout<<"每幅图像的标定误差:\n";
for (i=;i<image_count;i++)
{
vector<Point3f> tempPointSet=object_points[i];
/* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
projectPoints(tempPointSet,rvecsMat[i],tvecsMat[i],cameraMatrix,distCoeffs,image_points2);
/* 计算新的投影点和旧的投影点之间的误差*/
vector<Point2f> tempImagePoint = image_points_seq[i];
Mat tempImagePointMat = Mat(,tempImagePoint.size(),CV_32FC2);
Mat image_points2Mat = Mat(,image_points2.size(), CV_32FC2);
for (int j = ; j < tempImagePoint.size(); j++)
{
image_points2Mat.at<Vec2f>(,j) = Vec2f(image_points2[j].x, image_points2[j].y);
tempImagePointMat.at<Vec2f>(,j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
}
err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
total_err += err/= point_counts[i];
std::cout<<"第"<<i+<<"幅图像的平均误差:"<<err<<"像素"<<endl;
fout<<"第"<<i+<<"幅图像的平均误差:"<<err<<"像素"<<endl;
}
std::cout<<"总体平均误差:"<<total_err/image_count<<"像素"<<endl;
fout<<"总体平均误差:"<<total_err/image_count<<"像素"<<endl<<endl;
std::cout<<"评价完成!"<<endl;
//保存定标结果
std::cout<<"开始保存定标结果………………"<<endl;
Mat rotation_matrix = Mat(,,CV_32FC1, Scalar::all()); /* 保存每幅图像的旋转矩阵 */
fout<<"相机内参数矩阵:"<<endl;
fout<<cameraMatrix<<endl<<endl;
fout<<"畸变系数:\n";
fout<<distCoeffs<<endl<<endl<<endl;
for (int i=; i<image_count; i++)
{
fout<<"第"<<i+<<"幅图像的旋转向量:"<<endl;
fout<<tvecsMat[i]<<endl;
/* 将旋转向量转换为相对应的旋转矩阵 */
Rodrigues(tvecsMat[i],rotation_matrix);
fout<<"第"<<i+<<"幅图像的旋转矩阵:"<<endl;
fout<<rotation_matrix<<endl;
fout<<"第"<<i+<<"幅图像的平移向量:"<<endl;
fout<<rvecsMat[i]<<endl<<endl;
}
std::cout<<"完成保存"<<endl;
fout<<endl;
system("pause");
return ;
}

操作说明:

运行前需要先准备标定图片和记录标定图片列表的文本文件,并放入程序所在目录下,如下图所示:

文本文件内容如下

 其他标定工具:

OpenCV: https://docs.opencv.org/master/d4/d94/tutorial_camera_calibration.html

Matlab:  https://www.mathworks.com/help/vision/ug/single-cameracalibrator-app.html

ROS:  http://wiki.ros.org/camera_calibration

Opencv——相机标定的更多相关文章

  1. OpenCV相机标定

    标签(空格分隔): Opencv 相机标定是图像处理的基础,虽然相机使用的是小孔成像模型,但是由于小孔的透光非常有限,所以需要使用透镜聚焦足够多的光线.在使用的过程中,需要知道相机的焦距.成像中心以及 ...

  2. OpenCV相机标定和姿态更新

    原帖地址: http://blog.csdn.net/aptx704610875/article/details/48914043 http://blog.csdn.net/aptx704610875 ...

  3. OpenCV相机标定坐标系详解

    在OpenCV中,可以使用calibrateCamera函数,通过多个视角的2D/3D对应,求解出该相机的内参数和每一个视角的外参数. 使用C++接口时的输入参数如下: objectPoints - ...

  4. OpenCV 相机标定 findChessboardCorners() 与 cornerSubPix() 函数

    OpenCV 官方文档 findChessboardCorners():Finds the positions of internal corners of the chessboard. bool ...

  5. SLAM入门之视觉里程计(6):相机标定 张正友经典标定法详解

    想要从二维图像中获取到场景的三维信息,相机的内参数是必须的,在SLAM中,相机通常是提前标定好的.张正友于1998年在论文:"A Flexible New Technique fro Cam ...

  6. 【视频开发】【计算机视觉】相机标定(Camera calibration)原理、步骤

    相机标定(Camera calibration)原理.步骤 author@jason_ql(lql0716)  http://blog.csdn.net/lql0716 在图像测量过程以及机器视觉应用 ...

  7. 相机标定 matlab opencv ROS三种方法标定步骤(2)

    二  ubuntu下Opencv的相机标定 一般直接用Opencv的源码就可以进行相机的标定,但是可能只是会实现结果,却不懂实现的过程,我也是模模糊糊的看了<计算机视觉中的多视图几何>以及 ...

  8. 相机标定 matlab opencv ROS三种方法标定步骤(3)

    三 ,  ROS 环境下 如何进行相机标定 刚开始做到的时候遇到一些问题没有记录下来,现在回头写的时候都是没有错误的结果了,首先使用ROS标定相机, 要知道如何查看节点之间的流程图  rosrun r ...

  9. 相机标定 matlab opencv ROS三种方法标定步骤(1)

    一 . 理解摄像机模型,网上有很多讲解的十分详细,在这里我只是记录我的整合出来的资料和我的部分理解 计算机视觉领域中常见的三个坐标系:图像坐标系,相机坐标系,世界坐标系,实际上就是要用矩阵来表 示各个 ...

随机推荐

  1. 【PostMan】1、Postman 发送json格式请求

    Postman 是一个用来测试Web API的Chrome 外挂软件,可由google store 免费取得并安装于Chrome里,对于有在开发Web API的开发者相当有用,省掉不少写测试页面呼叫的 ...

  2. ViewModel处理View相关事件的多种方式(非技术贴,仅学习总结)

    众所周知,在UWP中,微软为我们提供了一种新的绑定方式:x:bind,它是基于编译时的绑定.在性能方面,运行时绑定Binding与它相比还是有些逊色的.因此针对一些确定的.不需要变更的数据,我们完全有 ...

  3. 使用bootstrap的JS插件实现模态框效果

    在上一篇文章中,我们使用 js+css 实现了模态框效果,在理解了模态框的基本实现方法和实现效果后,我们就要寻找更快捷的方法,又快又好的来完成模态框开发需求,从而节约时间,提高效率.一个好的轮子,不仅 ...

  4. ps -ef|grep ?解释

    上述内容为: 命令拆解: ps:将某个进程显示出来-A 显示所有程序. -e 此参数的效果和指定"A"参数相同.-f 显示UID,PPIP,C与STIME栏位. grep命令是查找 ...

  5. SEO高手和SEO屌丝的八个区

    原文:http://www.it28.cn/sousuoyinqing/853085.html SEO这个行业并不规范,有些seo工程师可以拿着高薪,进行一些大型网站的seo工作,其实主要是UEO的工 ...

  6. 安卓开发_浅谈Notification(通知栏)

    Notification通知栏是显示在手机状态的消息,代表一种全局效果的通知 快速创建一个Notification的步骤简单可以分为以下四步: 第一步:通过getSystemService()方法得到 ...

  7. JavaScript日期排序

    //日期排序 function sortDownDate(a, b) { return Date.parse(a.received) - Date.parse(b.received); } funct ...

  8. 项目开发常见字符串处理模型-strstr-while/dowhile模型

    strstr-whiledowhile模型用于在母字符串中查找符合特征的子字符串. c语言库提供了strstr函数,strstr函数用于判断母字符串中是否包含子字符串,包含的话返回子字符串的位置指针, ...

  9. unicode编码和utf8编码的区别

    编码格式不同在数据的传输和显示会有很大的影响.最近在使用的过程中发现一些网络文件 传输的编码格式问题,会影响文件的正常传输,于是查看了一下网上的资料,自己也写一篇 小总结. uicode是万国码,用1 ...

  10. (网页)Java程序员们最常犯的10个错误(转)

    转自CSDN: 1.将数组转化为列表 将数组转化为一个列表时,程序员们经常这样做: List<String> list = Arrays.asList(arr); Arrays.asLis ...