kmalloc

#include <linux/slab.h>

void *kmalloc(size_t size,int flags);

void kfree(void *addr);

flags:

GFP_ATOMIC:
    Used to allocate memory from interrupt handlers and other code outside of a process context.Never sleeps

GFP_KERNEL:
    Normal allocation of kernel memory,May sleep.

GFP_USER
    Used to allocate memory for user-space pages; it may sleep.
GFP_HIGHUSER
    Like GFP_USER,  but  allocates  from  high  memory,  if  any.  High  memory  is described in the next subsection.
GFP_NOIO
GFP_NOFS
    These flags function like GFP_KERNEL, but they add restrictions on what the ker-nel can do to satisfy the request. A GFP_NOFS allocation is not allowed to perform 

The allocation flags listed above can be augmented by an ORing in any of the follow-ing flags, which change how the allocation is carried out:

__GFP_DMA
    This flag requests allocation to happen in the DMA-capable memory zone. The exact meaning is platform-dependent and is explained in the following section.
__GFP_HIGHMEM
    This flag indicates that the allocated memory may be located in high memory.
__GFP_COLD
    Normally, the memory allocator tries to return “cache warm” pages—pages that are likely to be found in the processor cache. Instead, this flag requests a “cold” page, which has not been used in some time. It is useful for allocating pages for DMA reads, where presence in the processor cache is not useful. See the section“Direct Memory Access” in Chapter 1 for a full discussion of how to allocate DMA buffers.
__GFP_NOWARN
    This  rarely  used  flag  prevents  the  kernel  from  issuing  warnings  (with printk)when an allocation cannot be satisfied
__GFP_HIGH
    This flag marks a high-priority request, which is allowed to consume even thelast pages of memory set aside by the kernel for emergencies.
__GFP_REPEAT
__GFP_NOFAIL
__GFP_NORETRY
    These flags modify how the allocator behaves when it has difficulty satisfying anallocation.__GFP_REPEAT means “try a little harder” by repeating the attempt—but the allocation can still fail. The__GFP_NOFAIL flag tells the allocator never to fail; it works as hard as needed to satisfy the request. Use of__GFP_NOFAILis very strongly discouraged; there will probably never be a valid reason to use it in adevice driver. Finally,__GFP_NORETRY tells the allocator to give up immediately ifthe requested memory is not available.

Memory zones

The Linux kernel knows about a minimum of three memory zones: DMA-capable memory,normal memory,and high memory.

ZONE_DMA:是低内存的一块区域,用于DMA

ZONE_NORMAL:属于该区域的内存,被内核直接映射到线性地址

ZONE_HIGHMEM:是系统中剩下的可用内存,但是因为内核地址空间有限,这部分内存不能直接映射到内核。

links:http://www.ilinuxkernel.com/files/Linux_Physical_Memory_Description.pdf

The Size Argument

the smallest allocation that kmalloc can handle is as big as 32 or 64 bytes,depending on the page size used by the system's architecture.

If your code is to be completely portable,it cannot count on being able to allocate anything larger than 128KB.

Lookaside Caches

#include <linux/slab.h>

kmem_cache *kmem_cache_create(const char *name,size_t size,size_t offset,unsigned long flags,void (*ctor)(void*));

void *kmem_cache_alloc(kmem_cache *cache,int flags);

void kmem_cache_free(kmem_cache *cache,const void *obj);

void kmem_cache_destroy(kmem_cache *cache);

Memory pools

There are place in the kernel where memory allocations cannot be allowd to fail.

#include <linux/mempool.h>

typedef void *(mempool_alloc_t)(int gfp_mask,void *pool_data);

typedef void *(mempool_free_t)(void *element,void *pool_data);

mempool_t *mempool_create(int min_nr,mempool_alloc_t *alloc_fn,mempool_free_t *free_fn,void *pool_data);

void *mempool_alloc(mempool_t *pool,int gfp_mask);
void mempool_free(void *element,mempool_t *pool);

int mempool_resize(mempool_t *pool,int new_min_nr,int gfp_mask);
void mempool_destroy(mempool_t* pool);

eg:

cache = kmem_cache_create(...);
pool = mempool_create(20,mempool_alloc_slab,mempool_free_slab,cache);

get_free_page and Friends

If a module needs to allocate big chunks of memory,it is usually better to use a page-oriented technique.


#include <linux/gfp.h>

get_zeroed_page(unsigned int flags);

__get_free_page(unsigned int flags);

__get_free_pages(unsined int flags,unsigned int order);

void free_page(unsigned long addr);
void free_pages(unsigned long,unsigned long order);

order is the base-two logarithm of the number of pages you are requesting or freeing.For example,order is 0 if you want one page and 3 if you want request eight pages.

The alloc_pages Interface

The real core of the Linux page allocator is a function called alloc_pages_node:

struct page *alloc_pages_node(int nid,unsigned int flags,unsigned int order);

This function also has two variants;

struct page *alloc_pages(unsigned int flags,unsigned int order);

struct page *alloc_page(unsigned int flags);

void __free_page(struct page *page);
void __free_pages(struct page *page,unsigned int order);
void free_hot_page(struct page *page);
void free_cold_page(struct page *page);

vmalloc and Friends

The(virtual) address range used by kmalloc and __get_free_pages features a one-to-one mapping to physical memory,possibly shifted by a constant PAGE_OFFSET value.

allocates a contiguous memory region in the virtual address space.Although the pages are not consecutive in physical memory(each page is retrieved with a separate call to alloc_page),the kernel sees them as a contiguous range of addresses.

#include <linux/vmalloc.h>

void *vmalloc(unsigned long size);
void vfree(void *addr);
void *ioremap(unsigned long offset,unsigned long size);
void iounmap(void *addr);

Per-CPU Variables

#include <linux/percpu.h>

DEFINE_PER_CPU(type,name);

per_cpu(variable,int cpu_id);

get_cpu_var(sockets_in_use)++;
put_cpu_var(sockets_in_use);

The call to get_cpu_var returns an lvalue for the current processor's version of the variable and disables preemption.

Dynamically allocated per-CPU variable are also possible.

void *alloc_percpu(type);
void *__alloc_percpu(size_t size,size_t align);

per_cpu_ptr(void *per_cpu_var,int cpu_id);

void free_percpu(void *);

you need to use get_cpu to block preemption while working with the variabel.

eg:

int cpu;
cpu = get_cpu();
ptr = per_cpu_ptr(per_cpu_var,cpu);
/*work with ptr*/
put_cpu();

Export Per-CPU variables:

EXPORT_PER_CPU_SYMBOL(per_cpu_var);
EXPORT_PER_CPU_SYMBOL_GPL(per_cpu_var);

To access such a variable within a module,declare it with:

DECLARE_PER_CPU(type, name);

The use of DECLARE_PER_CPU(instead ofDEFINE_PER_CPU) tells the compiler that an external reference is being made

Acquiring a Dedicated Buffer at Boot Time

Needless to say,a module can't allocate memory at boot time;only drivers directly linked to the kernel can do that;

When the kernel is booted,it gains access to all the physical memory available in the system.It then initializes each of its subsystems by calling that subsystem's initialization function,allowing initialization code to allocate a memory buffer for private use by reducing the amount of RAM left for normal system operation.

#include <linux/bootmem.h>

void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

void free_bootmem(unsigned long addr,unsigned long size);

Linux kernel Programming - Allocating Memory的更多相关文章

  1. Linux kernel Programming - Concurrency and Race Conditions

    Concurrency and Its Management Race condition can often lead to system crashes, memory leak,corrupte ...

  2. Linux Kernel Programming - Time,Delays,and Deferred Work

    Measuring Time Lapses The counter and the utility functions to read it live in <linux/jiffies.h&g ...

  3. Linux kernel Programming - Advanced Char Driver Operations

    ioctl //user space int ioctl(int fd,unsigned long cmd,...); //kernel space int (*ioctl)(struct inode ...

  4. [中英对照]Linux kernel coding style | Linux内核编码风格

    Linux kernel coding style | Linux内核编码风格 This is a short document describing the preferred coding sty ...

  5. Linux kernel memory-faq.txt

    ## Linux kernel memory-faq.txt What is some existing documentation on Linux memory management? Ulric ...

  6. Linux Kernel中断子系统来龙去脉浅析【转】

    转自:http://blog.csdn.net/u011461299/article/details/9772215 版权声明:本文为博主原创文章,未经博主允许不得转载. 一般来说,在一个device ...

  7. ANALYSIS AND EXPLOITATION OF A LINUX KERNEL VULNERABILITY (CVE-2016-0728)

    ANALYSIS AND EXPLOITATION OF A LINUX KERNEL VULNERABILITY (CVE-2016-0728) By Perception Point Resear ...

  8. Python classes to extract information from the Linux kernel /proc files.

    python/python-linux-procfs/python-linux-procfs.git - Python classes to extract information from the ...

  9. Linux Kernel中所應用的數據結構及演算法

    Linux Kernel中所應用的數據結構及演算法 Basic Data Structures and Algorithms in the Linux kernel Links are to the  ...

随机推荐

  1. Linux Shell脚本编程case条件语句

    1,判断一个数字是否则在1,2,3之中. #!/bin/bash read -p "pls input a number:" n case "$n" in ) ...

  2. JavaScript初学者必看“new”

    译者按: 本文简单的介绍了new, 更多的是介绍原型(prototype),值得一读. 原文: JavaScript For Beginners: the 'new' operator 译者: Fun ...

  3. 小结:ES7——async和await初识

    一.async async其实是ES7才有有的关键字,async的意思是异步,顾名思义是有关异步的操作 async用于声明一个函数是异步的. 通常情况下async.await都是跟随promise一起 ...

  4. OneMap Client API

    MapSystem.Map.SmMap类 方法 mergerGeo:function(geoList) 将多个几何图形合并(支持面.线),组合成一个复合对象 例子: var geo=this.myMa ...

  5. SQLServer 2005Windows验证如何改为混合模式验证

    SQL Server 2005 Windows验证如何改为混合模式验证[摘] by:授客 QQ:1033553122 默认情况下,SQL Server 2005 Express是采用集成的Window ...

  6. python:异常处理、自定义异常、断言

    什么是异常: 当程序遭遇某些非正常问题的时候就会抛出异常:比如int()只能处理能转化成int的对象,如果传入一个不能转化的对象就会报错并抛出异常 常用的异常有: ValueError :传入无效的错 ...

  7. C语言编程比赛WBS

  8. MailKit帮助类

    public class EmailHelp { /// <summary> /// Smtp服务器地址 /// </summary> private static reado ...

  9. momentjs 学习

    momentjs 是一个JavaScript日期处理类库,官网地址:http://momentjs.com/ 字符串 + 格式 moment(String, String); moment(Strin ...

  10. Github API

    Web API web api是网站的一部分,用于与使用非常具体的URL请求特定信息的程序交互,这种请求被称为API调用.请求的数据将以易于处理的格式(如JSON或CSV)返回:依赖于外部数据源的大多 ...