两种算法本质是相同的。

都是从某一个点开始进行延伸,不断更新一个dis值,直到所有的点都被遍历到,从而求出一个最短路或者是一个树的边权的最小总和。

朴素算法都是n^2,都可以采用堆优化处理,降低复杂度到mlogn.

但是在一张完全图上跑,此时m=n^2,朴素算法反而快一些。而且常数小。

相比较于SPFA,dij可以稳定的mlogn 或者 n^2.

SPFA理论上是KE,但是完全图上E=n^2,直接多乘了一个k,而且传说卡SPFA是比较好卡的。所以图比较稠密的时候,dij能用,就用dij。

SPFA最大的优点就是可以处理负边权。

dij代码核心:(堆优化)

朴素时候,直接扔掉优先队列,循环一遍找最小dis值。(也是n^2所在)

struct point{
int hao;
ll dis;
bool friend operator <(point a,point b)
{
return a.dis>b.dis;
}
};
priority_queue<point>q;
void dij()
{
point st;
st.hao=s;
st.dis=;
q.push(st);
int has=;
while((has!=n)&&(!q.empty()))
{
point now=q.top();
q.pop();
if(vis[now.hao]) continue;
has++;
vis[now.hao]=;
dis[now.hao]=now.dis;
for(int i=head[now.hao];i;i=bian[i].nxt)
{
int y=bian[i].to;
if(!vis[y])
{
point last;
last.hao=y;
last.dis=now.dis+bian[i].val;
q.push(last);
}
}
}
}

prim与kruskal比较,其优点也是在完全图上有稳定的复杂度n^2.

prim也可以用堆优化,但是完全图上同样也是朴素更快。

kruskal的复杂度局限在于排序。mlogm直接送出。m=n^2慢炸。

代码核心:(堆优化)

朴素时候,直接扔掉优先队列,循环一遍找最小dis值。(也是n^2所在)

struct point{
int dis,hao;
bool friend operator <(point a,point b)
{
return a.dis>b.dis;
}
};
priority_queue<point>q;
int n,m;
int sum;
bool vis[N];
bool work()
{
point now;
now.hao=;
now.dis=;
int has=;
q.push(now);
while(has!=n&&(!q.empty()))
{
point now=q.top();q.pop();
if(vis[now.hao]) continue;
vis[now.hao]=;has++;
sum+=now.dis;
for(int i=head[now.hao];i;i=bian[i].nxt)
{
int y=bian[i].to;
if(!vis[y])
{
point kk;
kk.hao=y;
kk.dis=bian[i].val;
q.push(kk);
}
}
}
if(has==n) return true;
return false;
}

总结:

1.SPFA,kruskal在稀疏图上有优势。

2.dij,prim稠密图上占优。

3.dij不能处理负边权,SPFA可以。

dij与prim算法的更多相关文章

  1. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  2. 最小生成树のprim算法

    Problem A Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Sub ...

  3. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  4. 最小生成树——prim算法

    prim算法是选取任意一个顶点作为树的一个节点,然后贪心的选取离这棵树最近的点,直到连上所有的点并且不够成环,它的时间复杂度为o(v^2) #include<iostream>#inclu ...

  5. 洛谷 P3366 【模板】最小生成树 prim算法思路 我自己的实现

    网上有很多prim算法  用邻接矩阵 加什么lowcost数组 我觉得不靠谱 毕竟邻接矩阵本身就不是存图的好方法 所以自己写了一个邻接表(边信息表)版本的  注意我还是用了优先队列  每次新加入一个点 ...

  6. 最小生成树算法——prim算法

    prim算法:从某一点开始,去遍历相邻的边,然后将权值最短的边加入集合,同时将新加入边集中的新点遍历相邻的边更新边值集合(边值集合用来找出新的最小权值边),注意每次更新都需将cost数组中的点对应的权 ...

  7. 贪心算法-最小生成树Kruskal算法和Prim算法

    Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...

  8. Prim算法(三)之 Java详解

    前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...

  9. Prim算法(二)之 C++详解

    本章是普里姆算法的C++实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/sk ...

随机推荐

  1. (4)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- Consul服务发现和消费

    上一章说了  Consul服务注册  现在我要连接上Consul里面的服务 请求它们的API接口 应该怎么做呢? 1.找Consul要一台你需要的服务器 1.1 获取Consul下的所有注册的服务 u ...

  2. 实验五 TCP传输及加密

    实验内容: 1.运行教材上TCP代码,结对进行,一人服务器,一人客户端: 2.利用加解密代码包,编译运行代码,一人加密,一人解密: 3.集成代码,一人加密后通过TCP发送: 注:加密使用AES或者DE ...

  3. 《Linux内核分析》第七周笔记 可执行程序的装载

    20135132陈雨鑫 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000  ...

  4. 作业七:Linux内核如何装载和启动一个可执行程序

    作业七:Linux内核如何装载和启动一个可执行程序 一.编译链接的过程和ELF可执行文件格式 可执行文件的创建——预处理.编译和链接 在object文件中有三种主要的类型. 一个可重定位(reloca ...

  5. Doors Breaking and Repairing CodeForces - 1102C (思维)

    You are policeman and you are playing a game with Slavik. The game is turn-based and each turn consi ...

  6. shell脚本--制作自己的服务脚本

    首先注意一下,我用的环境是centos6.5,中间有一些操作和在Ubuntu上有一些地方的操作是不同的, 编写脚本 首先看一个实例:假设有一个test的服务,可以通过命令对test进行启动.关闭或者重 ...

  7. Laravel 5.5 文档 ] 快速入门 —— 安装配置篇

    服务器要求 Laravel 框架对PHP版本和扩展有一定要求,不过这些要求 Laravel Homestead 都已经满足了,不过如果你没有使用 Homestead 的话(那真是一件很遗憾的事情),有 ...

  8. python对redis的常用操作 上 (对列表、字符串、散列结构操作)

    这里的一切讨论均基于python的redis-py库. 安装使用: pip install redis 然后去获取一个redis客户端: redis_conn = redis.Redis(host=R ...

  9. .gitignore & .DS_Store

    .gitignore & .DS_Store https://stackoverflow.com/questions/107701/how-can-i-remove-ds-store-file ...

  10. Spark_RDD之基本RDD操作

    1.基本转化操作    1.1最常用的两个转化操作时map()和filter(). map()接收一个函数,把这个函数用于RDD中的每个元素,将函数作用之后的结果作为结果RDD中元素的值. filte ...