UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

Description

Let’s play a stone removing game.

Initially, n stones are arranged on a circle and numbered 1, …, n clockwise (Figure 1). You are also given two numbers k and m. From this state, remove stones one by one following the rules explained below, until only one remains. In step 1, remove stone m. In step 2, locate the k-th next stone clockwise from m and remove it. In subsequent steps, start from the slot of the stone removed in the last step, make k hops clockwise on the remaining stones and remove the one you reach. In other words, skip (k − 1) remaining stones clockwise and remove the next one. Repeat this until only one stone is left and answer its number. For example, the answer for the case n = 8, k = 5, m = 3 is 1, as shown in Figure 1.



Initial state: Eight stones are arranged on a circle.

Step 1: Stone 3 is removed since m = 3.

Step 2: You start from the slot that was occupied by stone 3. You skip four stones 4, 5, 6 and 7 (since k = 5), and remove the next one, which is 8.

Step 3: You skip stones 1, 2, 4 and 5, and thus remove 6. Note that you only count stones that are still on the circle and ignore those already removed. Stone 3 is ignored in this case.

Steps 4–7: You continue until only one stone is left. Notice that in later steps when only a few stones remain, the same stone may be skipped multiple times. For example, stones 1 and 4 are skipped twice in step 7.

Final State: Finally, only one stone, 1, is on the circle. This is the final state, so the answer is 1.

Input

The input consists of multiple datasets each of which is formatted as follows.

n k m

The last dataset is followed by a line containing three zeros. Numbers in a line are separated by a single space. A dataset satisfies the following conditions.

2 ≤ n ≤ 10000, 1 ≤ k ≤ 10000, 1 ≤ m ≤ n

The number of datasets is less than 100.

Output

For each dataset, output a line containing the stone number left in the final state. No extra characters such as spaces should appear in the output.

Sample Input

8 5 3

100 9999 98

10000 10000 10000

0 0 0

Sample Output

1

93

2019

Http

UVA:https://vjudge.net/problem/UVA-1394

Gym:https://vjudge.net/problem/Gym-101415A

UVAlive:https://vjudge.net/problem/UVALive-3882

POJ:https://vjudge.net/problem/POJ-3517

Aizu:https://vjudge.net/problem/Aizu-1275

Source

动态规划,思维

题目大意

约瑟夫问题的变式。先指定第m个人必须死,然后每隔k个人死一个。求最后那个死的人的编号是什么。

解决思路

首先不考虑第一个必须死的人是m的情况。我们把n个人编号为[0,n-1]。那么第一轮出局的就是编号为k-1的人,剩下的人的编号是\([0,k-2]\cup[k,n-1]\)。

然后我们从编号为k的人开始,循环一圈给所有人重新分配编号



然后我们就可以发现原来n个人的题目就变成了n-1的规模。运用这种方法,我们就可以推到n=1的情况,而此时,F[1]=0。

那么,既然现在知道n=1的结果,那么我们考虑从1开始正着推出n。我们设F[i]表示i个人中最后存活的人的编号。现在我们知道F[i-1],怎么推出F[i]呢?

其实这个问题就是问如何用存活者在i-1个人中的编号求出存活者在i个人中的编号。我们知道,从原问题推到子问题其实是把所有人的编号-k,那么从子问题推到原问题就是把人的编号+k,但要注意,此时+k可能会大于当前人的规模i,所以要对i取膜。

综上,动态转移的方程就是

\[F[i]=(F[i-1]+k)\%i
\]

当然这个式子还可以化简。因为F[i]的状态只与F[i-1]有关,所以我们可以直接用一个变量f代替整个F数组

\[f=(f+k)\%i
\]

最后再来考虑第一个死的人必须是m的情况,而我们第一个人是k,所以相当于我们要补上m-k的一个差量,所以最后的答案是f+m-k。另外需要注意的是,因为我们在递推的时候为了方便从0开始编号的,所以还要加上1,也就是f+m-k+1,再对n取膜。同时,如果取膜后结果是0或负数,要加上n变成正数。

代码不长,但要想到很难。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int inf=2147483647; int main()
{
int n,k,m;
while (scanf("%d%d%d",&n,&k,&m)!=EOF)
{
if ((n==0)&&(m==0)&&(k==0))
break;
int f=0;//初始值
for (int i=2;i<=n;i++)//动态转移
f=(f+k)%i;
f=(f+m-k+1)%n;//把开始是m的情况考虑进去
if (f<=0)//取膜后有可能变成负数或0,此时要将其变成正数
f=f+n;
printf("%d\n",f);
}
return 0;
}

UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)的更多相关文章

  1. poj 2229 一道动态规划思维题

    http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动 ...

  2. UVA.699 The Falling Leaves (二叉树 思维题)

    UVA.699 The Falling Leaves (二叉树 思维题) 题意分析 理解题意花了好半天,其实就是求建完树后再一条竖线上的所有节点的权值之和,如果按照普通的建树然后在计算的方法,是不方便 ...

  3. UVA.679 Dropping Balls (二叉树 思维题)

    UVA.679 Dropping Balls (二叉树 思维题) 题意分析 给出深度为D的完全二叉树,按照以下规则,求第I个小球下落在那个叶子节点. 1. 默认所有节点的开关均处于关闭状态. 2. 若 ...

  4. UVA.11384 Help is needed for Dexter (思维题)

    UVA.11384 Help is needed for Dexter (思维题) 题意分析 同样水题一道,这回思路对了. 给出数字n,面对一个1,2,3,4--n的数字序列,你可以对他们的部分或者全 ...

  5. UVA.11636 Hello World! (思维题)

    UVA.11636 Hello World! (思维题) 题意分析 这题挺水的,还是错了几发. QWQ. 有一个同学打了一行hello world,现在他想打n行hello world,请问最少复制粘 ...

  6. UVA.11464 Even Parity (思维题 开关问题)

    UVA.11464 Even Parity (思维题 开关问题) 题目大意 给出一个n*n的01方格,现在要求将其中的一些0转换为1,使得每个方格的上下左右格子的数字和为偶数(如果存在的话),求使得最 ...

  7. UVA.10881 Piotr's Ants (思维题)

    UVA.10881 Piotr's Ants (思维题) 题意分析 有一根长度为L cm的木棍,上有n只蚂蚁,蚂蚁要么向左爬,要么向右,速度均为1cm/s,若2只蚂蚁相撞,则蚂蚁同时调头.求解第T秒时 ...

  8. UVA.11300 Spreading the Wealth (思维题 中位数模型)

    UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人 ...

  9. 思维题 Gym 100553A Alter Board

    题目传送门 /* 题意:一个n×m的矩形,相邻的颜色不同,黑或白.问最少的翻转次数,每次翻转可指定任意一个子矩形 思维题:最少要把偶数行和列翻转,也就是n/2+m/2次 */ #include < ...

随机推荐

  1. MPI-Hydra Process Managerment Framework

    1. 概述2. 执行过程和控制流 官方文档地址:https://wiki.mpich.org/mpich/index.php/Hydra_Process_Management_Framework 1. ...

  2. 自己动手写把”锁”---LockSupport深入浅出

    本篇是<自己动手写把"锁">系列技术铺垫的最后一个知识点.本篇主要讲解LockSupport工具类,它用来实现线程的挂起和唤醒. LockSupport是Java6引入 ...

  3. Python - 列表解析式

    列表解析——用来动态地创建列表 [expr for iter_var in iterable if cond_expr] 例子一: map(lambda x: x**2, range(6)) [0, ...

  4. java 定时器中任务的启动、停止、再启动

    package com.cvicse.ump.timer.service; import java.util.Date; import java.util.Timer; import com.cvic ...

  5. springboot整合curator实现分布式锁

    理论篇: Curator是Netflix开源的一套ZooKeeper客户端框架. Netflix在使用ZooKeeper的过程中发现ZooKeeper自带的客户端太底层, 应用方在使用的时候需要自己处 ...

  6. Linux内核分析 笔记六 进程的描述和进程的创建 ——by王玥

    一.知识点总结 (一)进程的描述 1.操作系统内核里有三大功能: 进程管理 内存管理 文件系统 2.进程描述符:task_struct 2.进程描述符——struct task_struct 1. p ...

  7. pandas修改全列的时间格式 无需使用apply

    df.date.dt.strftime('%Y%m%d') #实现全列修改时间格式

  8. Windows samba history

    https://blogs.technet.microsoft.com/josebda/2013/10/02/windows-server-2012-r2-which-version-of-the-s ...

  9. 一个简单的修改 iis默认页面的方法..

    1. IIS 默认打开的是欢迎页面 2. 然后找到了一个比较简单的修改默认界面的方法: 找到这个文件的默认路径 C:\inetpub\wwwroot 然后修改 iisstart.htm 文件 在hea ...

  10. 电梯间的谈话:3分钟快速回答CEO的问题

    想象一下,你在电梯里遇见了公司的CEO,他让你用3分钟来解释聚焦答案模式这个深奥的术语到底是什么意思.你可以这么说—— 为奠定一个正确的基调,让他酝酿好情绪听你说接下来的话,你可以这样开头: “总裁, ...