本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。

所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。

在这个例子里将预测几个函数:

  • 正弦函数:sin

  • 同时存在正弦函数和余弦函数:sin和cos

  • x*sin(x)

首先,建立LSTM模型,lstm_model,这个模型有一系列的不同时间步的lstm单元(cell),紧跟其后的是稠密层。

def lstm_model(time_steps, rnn_layers, dense_layers=None):
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
for layer in layers]
return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
def dnn_layers(input_layers, layers):
if layers and isinstance(layers, dict):
return skflow.ops.dnn(input_layers,
layers['layers'],
activation=layers.get('activation'),
dropout=layers.get('dropout'))
elif layers:
return skflow.ops.dnn(input_layers, layers)
else:
return input_layers
def _lstm_model(X, y):
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
x_ = skflow.ops.split_squeeze(1, time_steps, X)
output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
output = dnn_layers(output[-1], dense_layers)
return skflow.models.linear_regression(output, y)
return _lstm_model

所建立的模型期望输入数据的维度与(batch size,第一个lstm cell的时间步长time_step,特征数量num_features)相关。 
接下来我们按模型所能接受的数据方式来准备数据。

def rnn_data(data, time_steps, labels=False):
"""
creates new data frame based on previous observation
* example:
l = [1, 2, 3, 4, 5]
time_steps = 2
-> labels == False [[1, 2], [2, 3], [3, 4]]
-> labels == True [2, 3, 4, 5]
"""
rnn_df = []
for i in range(len(data) - time_steps):
if labels:
try:
rnn_df.append(data.iloc[i + time_steps].as_matrix())
except AttributeError:
rnn_df.append(data.iloc[i + time_steps])
else:
data_ = data.iloc[i: i + time_steps].as_matrix()
rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
return np.array(rnn_df)
def split_data(data, val_size=0.1, test_size=0.1):
"""
splits data to training, validation and testing parts
"""
ntest = int(round(len(data) * (1 - test_size)))
nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
return df_train, df_val, df_test
def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
"""
Given the number of `time_steps` and some data.
prepares training, validation and test data for an lstm cell.
"""
df_train, df_val, df_test = split_data(data, val_size, test_size)
return (rnn_data(df_train, time_steps, labels=labels),
rnn_data(df_val, time_steps, labels=labels),
rnn_data(df_test, time_steps, labels=labels))
def generate_data(fct, x, time_steps, seperate=False):
"""generate data with based on a function fct"""
data = fct(x)
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test

这将会创建一个数据让模型可以查找过去time_steps步来预测数据。比如,LSTM模型的第一个cell是10 time_steps cell,为了做预测我们需要输入10个历史数据点。y值跟我们想预测的第十个值相关。 
现在创建一个基于LSTM模型的回归量。

regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
verbose=1,
steps=TRAINING_STEPS,
optimizer='Adagrad',
learning_rate=0.03,
batch_size=BATCH_SIZE)

预测sin函数

X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
# Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
# Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
# Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081

预测测试数据

mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.000776

真实sin函数

预测sin函数

预测sin和cos混合函数

def sin_cos(x):
return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
# Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
# Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
# Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
# Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
# Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115

预测测试数据

mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.001144

真实的sin_cos函数

预测的sin_cos函数

预测x*sin函数
def x_sin(x):
return x * np.sin(x)
X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678
# Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590
# Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346
# Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680
# Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604
# Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947

预测测试数据

mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 61.024454351

真实的x*sin函数

预测的x*sin函数

使用TensorFlow的递归神经网络(LSTM)进行序列预测的更多相关文章

  1. TensorFlow(十一):递归神经网络(RNN与LSTM)

    RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序 ...

  2. 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)

    递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...

  3. 学习笔记CB010:递归神经网络、LSTM、自动抓取字幕

    递归神经网络可存储记忆神经网络,LSTM是其中一种,在NLP领域应用效果不错. 递归神经网络(RNN),时间递归神经网络(recurrent neural network),结构递归神经网络(recu ...

  4. 机器学习与Tensorflow(6)——LSTM的Tensorflow实现、Tensorboard简单实现、CNN应用

    最近写的一些程序以及做的一个关于轴承故障诊断的程序 最近学习进度有些慢 而且马上假期 要去补习班 去赚下学期生活费 额.... 抓紧时间再多学习点 1.RNN递归神经网络Tensorflow实现程序 ...

  5. tensorflow实现循环神经网络

    包括卷积神经网络(CNN)在内的各种前馈神经网络模型, 其一次前馈过程的输出只与当前输入有关与历史输入无关. 递归神经网络(Recurrent Neural Network, RNN)充分挖掘了序列数 ...

  6. 递归神经网络(RNN)简介(转载)

    在此之前,我们已经学习了前馈网络的两种结构--多层感知器和卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫.但是对于一些有明显的 ...

  7. tensorflow笔记:多层LSTM代码分析

    tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...

  8. Tensorflow实例:利用LSTM预测股票每日最高价(一)

    RNN与LSTM 这一部分主要涉及循环神经网络的理论,讲的可能会比较简略. 什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神 ...

  9. 十 | 门控循环神经网络LSTM与GRU(附python演练)

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) ...

随机推荐

  1. MVC与单元测试实践之健身网站(八)-统计分析

    ​统计分析模块与之前的内容相对独立,用于记录并跟踪各部位围度的变化.还需提供对所作计划的分析,辅助使计划更合理. 一 围度记录 这儿可以记录各项身体围度指标,现在包括体重在内身体上上下下基本全部提供了 ...

  2. Android架构篇--MVP模式的介绍篇

    摘要: 在MVVM成熟之前MVP模式在Android上有被神化的趋势,笔者曾经在商业项目中从零开始大规模采用过MVP模式对项目进行开发.在使用MVP模式进行开发的时候发现项目的结构模式对开发是有一定的 ...

  3. 三. Redis 主从复制

    特点 1. Master可以拥有多个Slave 2. 多个Slave除可以连接一个Master外,还可以连接多个Salve(避免Master挂掉不能同步,当Master挂掉,其中一个Slave会立即变 ...

  4. 记录定时任务的一个错误:crontab 中使用"%"的问题

    最近工作需要,需要定时执行命令文件,并且把执行的日志重定向输出到以日期命名的文件中,命令如下: /bin/bash /data/shell/merge.sh &>> /data/s ...

  5. 在c/c++中调用Java方法

    JNI就是Java Native Interface, 即可以实现Java调用本地库, 也可以实现C/C++调用Java代码, 从而实现了两种语言的互通, 可以让我们更加灵活的使用. 通过使用JNI可 ...

  6. C#基础(数据类型运算符)

    ---恢复内容开始--- 1.类 修饰符 class 类名 基类或接口 { } 2.命名规范 成员变量前加_ 首字符小写,后面单词首字母大写(Camel规则) 接口首字母为I 方法的命名使用动词 所有 ...

  7. django静态文件

    django静态文件(js脚本.CSS.图片等) 默认统一放在每一个app的static文件夹下, 通过收集静态文件命令,自动将每一个app下static文件夹下的文件复制到根目录的static文件夹 ...

  8. nginx配置基于域名、端口、IP的虚拟主机

    1.基于域名的虚拟主机: 绝大多数企业对外提供服务的网站使用的都是基于域名的主机,通过不同的域名区分不同的虚拟主机. 首先我们进入安装nginxd的目录下:/application/nginx-1.6 ...

  9. 通信原理之OSI七层参考模型(一)

    1.什么是计算机网络 谈计算机通信原理当然离不开计算机网络,那么什么是计算机网络.官方定义:计算机网络是由两台或两台以上的计算机通过网络设备连接起来所组成的一个系统,在这个系统中计算机与计算机之间可以 ...

  10. oracle的order by排序中空字符串处理方法

    1.缺省处理 Oracle在Order by 时缺省认为null是最大值,所以如果是ASC升序则排在最后,DESC降序则排在最前 2.使用nvl函数 nvl函数可以将输入参数为空时转换为一特定值,如 ...