使用TensorFlow的递归神经网络(LSTM)进行序列预测
本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。
所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。
在这个例子里将预测几个函数:
- 正弦函数:sin
- 同时存在正弦函数和余弦函数:sin和cos
- x*sin(x)
首先,建立LSTM模型,lstm_model,这个模型有一系列的不同时间步的lstm单元(cell),紧跟其后的是稠密层。
def lstm_model(time_steps, rnn_layers, dense_layers=None):
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
for layer in layers]
return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
def dnn_layers(input_layers, layers):
if layers and isinstance(layers, dict):
return skflow.ops.dnn(input_layers,
layers['layers'],
activation=layers.get('activation'),
dropout=layers.get('dropout'))
elif layers:
return skflow.ops.dnn(input_layers, layers)
else:
return input_layers
def _lstm_model(X, y):
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
x_ = skflow.ops.split_squeeze(1, time_steps, X)
output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
output = dnn_layers(output[-1], dense_layers)
return skflow.models.linear_regression(output, y)
return _lstm_model
所建立的模型期望输入数据的维度与(batch size,第一个lstm cell的时间步长time_step,特征数量num_features)相关。
接下来我们按模型所能接受的数据方式来准备数据。
def rnn_data(data, time_steps, labels=False):
"""
creates new data frame based on previous observation
* example:
l = [1, 2, 3, 4, 5]
time_steps = 2
-> labels == False [[1, 2], [2, 3], [3, 4]]
-> labels == True [2, 3, 4, 5]
"""
rnn_df = []
for i in range(len(data) - time_steps):
if labels:
try:
rnn_df.append(data.iloc[i + time_steps].as_matrix())
except AttributeError:
rnn_df.append(data.iloc[i + time_steps])
else:
data_ = data.iloc[i: i + time_steps].as_matrix()
rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
return np.array(rnn_df)
def split_data(data, val_size=0.1, test_size=0.1):
"""
splits data to training, validation and testing parts
"""
ntest = int(round(len(data) * (1 - test_size)))
nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
return df_train, df_val, df_test
def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
"""
Given the number of `time_steps` and some data.
prepares training, validation and test data for an lstm cell.
"""
df_train, df_val, df_test = split_data(data, val_size, test_size)
return (rnn_data(df_train, time_steps, labels=labels),
rnn_data(df_val, time_steps, labels=labels),
rnn_data(df_test, time_steps, labels=labels))
def generate_data(fct, x, time_steps, seperate=False):
"""generate data with based on a function fct"""
data = fct(x)
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test
这将会创建一个数据让模型可以查找过去time_steps步来预测数据。比如,LSTM模型的第一个cell是10 time_steps cell,为了做预测我们需要输入10个历史数据点。y值跟我们想预测的第十个值相关。
现在创建一个基于LSTM模型的回归量。
regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
verbose=1,
steps=TRAINING_STEPS,
optimizer='Adagrad',
learning_rate=0.03,
batch_size=BATCH_SIZE)
预测sin函数
X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
# Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
# Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
# Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081
预测测试数据
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.000776
真实sin函数
预测sin函数
预测sin和cos混合函数
def sin_cos(x):
return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
# Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
# Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
# Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
# Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
# Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115
预测测试数据
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.001144
真实的sin_cos函数
预测的sin_cos函数
预测x*sin函数
def x_sin(x):
return x * np.sin(x)
X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678
# Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590
# Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346
# Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680
# Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604
# Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947
预测测试数据
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 61.024454351
真实的x*sin函数
预测的x*sin函数
使用TensorFlow的递归神经网络(LSTM)进行序列预测的更多相关文章
- TensorFlow(十一):递归神经网络(RNN与LSTM)
RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序 ...
- 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)
递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...
- 学习笔记CB010:递归神经网络、LSTM、自动抓取字幕
递归神经网络可存储记忆神经网络,LSTM是其中一种,在NLP领域应用效果不错. 递归神经网络(RNN),时间递归神经网络(recurrent neural network),结构递归神经网络(recu ...
- 机器学习与Tensorflow(6)——LSTM的Tensorflow实现、Tensorboard简单实现、CNN应用
最近写的一些程序以及做的一个关于轴承故障诊断的程序 最近学习进度有些慢 而且马上假期 要去补习班 去赚下学期生活费 额.... 抓紧时间再多学习点 1.RNN递归神经网络Tensorflow实现程序 ...
- tensorflow实现循环神经网络
包括卷积神经网络(CNN)在内的各种前馈神经网络模型, 其一次前馈过程的输出只与当前输入有关与历史输入无关. 递归神经网络(Recurrent Neural Network, RNN)充分挖掘了序列数 ...
- 递归神经网络(RNN)简介(转载)
在此之前,我们已经学习了前馈网络的两种结构--多层感知器和卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫.但是对于一些有明显的 ...
- tensorflow笔记:多层LSTM代码分析
tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...
- Tensorflow实例:利用LSTM预测股票每日最高价(一)
RNN与LSTM 这一部分主要涉及循环神经网络的理论,讲的可能会比较简略. 什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神 ...
- 十 | 门控循环神经网络LSTM与GRU(附python演练)
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) ...
随机推荐
- Log4J Appender - 将Log4J的日志内容发送到agent的source
项目中使用log4j打印的内容同时传输到flume 1.flume端 flume的agent配置内容如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a1.sour ...
- 【Java入门提高篇】Day31 Java容器类详解(十三)TreeSet详解
上一篇很水的介绍完了TreeMap,这一篇来看看更水的TreeSet. 本文将从以下几个角度进行展开: 1.TreeSet简介和使用栗子 2.TreeSet源码分析 本篇大约需食用10分钟,各位看官请 ...
- AspNetCore2 Hangfire定时任务
Hangfire 是一个简单的用于.net及.net core 应用程序,通过数据库持久化,定时执行后台任务的组件 1.通过NuGet安装Hangfire 2.在Startup.cs文件的Config ...
- python中json序列化的东东
之所以写这个因为自己总是弄混了,容易弄错,记下来有事没事看看 序列化是指把变量从内存中变成可存储或传输的过程称之为序列化用(使用dump或者dumps),把变量内容从序列化的对象重新读到 内存里称 ...
- AIX mount nfs 文件系统失败
报 mount: 1831-008 的错,配置系统参数后恢复. 操作系统版本为: # oslevel 6.1.0.0 LOG如下: # mount 192.168.240.69:/xyz/xvdh2/ ...
- 17秋 软件工程 团队第五次作业 Alpha Scrum4
17秋 软件工程 团队第五次作业 Alpha Scrum4 今日完成的任务 世强:部门基础信息模块数据更新.部门审核提交: 港晨:设计编写登录界面的一部分: 树民:学习python基本语法.flask ...
- 使用golang求出A-Z的所有子集
参考链接:https://blog.csdn.net/K346K346/article/details/80436430 有一个集合由A-Z这26个字母组成,打印这个集合的所有子集,每个子集一行,写C ...
- EasyUI DataGrid自适应高度
我的页面分为上下两部分,但发现下面有DataGrid的高度总是自动改,数据根本显示不出来. 后来在博客园里看到这个:http://www.cnblogs.com/xienb/archive/2013/ ...
- Mac OS X 下优化 Terminal,一篇就够了!
先上最终效果图: 目录 目录 1. 相关工具介绍 2. 配置总览 3. 安装步骤 3.1. 安装 iTerm2 3.2. 安装XCode's Command line tools 3.3. 检查 zs ...
- 微信小程序のCss(一)
一.margin:外边距:设置对象四边的外延边距. margin: 20rpx 10rpx 25rpx 10rpx :如果提供全部四个参数值,将按上.右.下.左的顺序作用于四边. margin:20r ...