Luogu P3455 [POI2007]ZAP-Queries
由于之前做了Luogu P2257 YY的GCD,这里的做法就十分套路了。
建议先看上面一题的推导,这里的话就略去一些共性的地方了。
还是和之前一样设:
\]
\]
还是莫比乌斯反演定理推出:
\]
这时我们发现,不像上面一题那么繁琐还要对\(f(n)\)求和,这里\(ans=f(d)\)
所以可以直接开始推导答案:
\]
还是考虑换个东西枚举,我们设\(\lfloor\frac{k}{d}\rfloor=t\),枚举\(t\)则有:
\]
这个式子已经变成\(O(n)\)的了,还是注意到\(\lfloor\frac{a}{t\cdot d}\rfloor\lfloor\frac{b}{t\cdot d}\rfloor\)可以除法分块,然后只需要对莫比乌斯函数做一个前缀和即可单次\(O(\sqrt n)\)。
CODE
#include<cstdio>
#include<cctype>
#define RI register int
using namespace std;
const int P=50005;
int t,n,m,d,prime[P+5],cnt,mu[P+5],sum[P+5]; long long ans; bool vis[P+5];
class FileInputOutput
{
private:
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
#define S 1<<21
char Fin[S],Fout[S],*A,*B; int Ftop,pt[25];
public:
FileInputOutput() { A=B=Fin; Ftop=0; }
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc())); x*=flag;
}
inline void write(long long x)
{
if (!x) return (void)(pc(48),pc('\n')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
#undef S
}F;
#define Pi prime[j]
inline void Euler(void)
{
vis[1]=mu[1]=1; RI i,j; for (i=2;i<=P;++i)
{
if (!vis[i]) prime[++cnt]=i,mu[i]=-1;
for (j=1;j<=cnt&&i*Pi<=P;++j)
{
vis[i*Pi]=1; if (i%Pi) mu[i*Pi]=-mu[i]; else break;
}
}
for (i=1;i<=P;++i) sum[i]=sum[i-1]+mu[i];
}
#undef Pi
inline int min(int a,int b)
{
return a<b?a:b;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
for (Euler(),F.read(t);t;--t)
{
F.read(n); F.read(m); F.read(d); ans=0; int lim=min(n/d,m/d);
for (RI l=1,r;l<=lim;l=r+1)
{
r=min(n/(n/l),m/(m/l)); ans+=1LL*(n/(l*d))*(m/(l*d))*(sum[r]-sum[l-1]);
}
F.write(ans);
}
return F.Fend(),0;
}
Luogu P3455 [POI2007]ZAP-Queries的更多相关文章
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
题目 P3455 [POI2007]ZAP-Queries 解析 莫比乌斯反演. 给定\(n\),\(m\),\(d\),求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- [POI2007]Zap
bzoj 1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Descriptio ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
随机推荐
- WEB服务器----Apache 安装配置
1.官网下载需要的安装包(包括主安装包和依赖包的下载)可以直接使用Linux的wget进行下载: httpd安装包下载地址:http://mirrors.hust.edu.cn/apache//htt ...
- Windows中几个内存相当的指标
以下几个内存大小相当: IS:虚拟内存任务管理器:提交内存进程对象上的:PrivateMemorySize64,性能计数器:Process\Private Bytes
- loadrunner 运行脚本-Run-time Settings-Browser Enmulation设置详解
运行脚本-Run-time Settings-Browser Enmulation设置详解 by:授客 QQ:1033553122 浏览器模拟 所有Internet Vuser Header包含一个标 ...
- 【Java入门提高篇】Day27 Java容器类详解(九)LinkedList详解
这次介绍一下List接口的另一个践行者——LinkedList,这是一位集诸多技能于一身的List接口践行者,可谓十八般武艺,样样精通,栈.队列.双端队列.链表.双向链表都可以用它来模拟,话不多说,赶 ...
- system.img镜像转换为system.new.dat + system.transfer.list
android 8.1上面验证,支持所有的android版本,直接放到sdk中执行即可. img2sdat.py #!/usr/bin/env python #coding=utf-8 imp ...
- sql最简单的查询语句
-- 2 **************************************************** -- 最简单的查询语句 -- 2.1 ----------------------- ...
- 高通移植mipi LCD的过程LK代码
lk部分:(实现LCD兼容) 1. 函数定位 aboot_init()来到target_display_init(): 这就是高通原生lk LCD 兼容的关键所在.至于你需要兼容多少LCD 就在whi ...
- 监控.net 网站 Glimpse
使用Nuget 安装Glimpse 安装好后,config会默认添加几个节点 安装好之后 只需要浏览器输入 网站/Glimpse.axd 再次进入网站 就可以查看(ajax sql session ...
- 【hexo】02完成本地创建
获得一个github账号并创建repo,命名为yourname.github.io 搭桥到github 配置github账户信息(YourName和YourEail都替换成你自己的): 网站部署 $ ...
- Postgresql 截取字符串
截取字符串一般用 substring 就够用了.对于有些长度不定的就没法用这个函数了,但还是有规律的,可以某个字符分割. 如:(这是一个url,截取最后一部分.现在要取 - 后面部分内容) 8a59e ...