由于之前做了Luogu P2257 YY的GCD,这里的做法就十分套路了。

建议先看上面一题的推导,这里的话就略去一些共性的地方了。

还是和之前一样设:

\[f(d)=\sum_{i=1}^a \sum_{j=1}^b[\gcd(i,j)=d]
\]

\[F(n)=\sum_{n|d} f(d)=\lfloor\frac{a}{n}\rfloor\lfloor\frac{b}{n}\rfloor
\]

还是莫比乌斯反演定理推出:

\[f(n)=\sum_{n|d}\mu(\lfloor\frac{d}{n}\rfloor)F(d)
\]

这时我们发现,不像上面一题那么繁琐还要对\(f(n)\)求和,这里\(ans=f(d)\)

所以可以直接开始推导答案:

\[ans=\sum_{d|k}\mu(\lfloor\frac{k}{d}\rfloor)F(k)
\]

还是考虑换个东西枚举,我们设\(\lfloor\frac{k}{d}\rfloor=t\),枚举\(t\)则有:

\[ans=\sum_{t=1}^{\min(\lfloor\frac{a}{d}\rfloor,\lfloor\frac{b}{d}\rfloor)}\mu(t)\lfloor\frac{a}{t\cdot d}\rfloor\lfloor\frac{b}{t\cdot d}\rfloor
\]

这个式子已经变成\(O(n)\)的了,还是注意到\(\lfloor\frac{a}{t\cdot d}\rfloor\lfloor\frac{b}{t\cdot d}\rfloor\)可以除法分块,然后只需要对莫比乌斯函数做一个前缀和即可单次\(O(\sqrt n)\)。

CODE

#include<cstdio>
#include<cctype>
#define RI register int
using namespace std;
const int P=50005;
int t,n,m,d,prime[P+5],cnt,mu[P+5],sum[P+5]; long long ans; bool vis[P+5];
class FileInputOutput
{
private:
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
#define S 1<<21
char Fin[S],Fout[S],*A,*B; int Ftop,pt[25];
public:
FileInputOutput() { A=B=Fin; Ftop=0; }
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc())); x*=flag;
}
inline void write(long long x)
{
if (!x) return (void)(pc(48),pc('\n')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
#undef S
}F;
#define Pi prime[j]
inline void Euler(void)
{
vis[1]=mu[1]=1; RI i,j; for (i=2;i<=P;++i)
{
if (!vis[i]) prime[++cnt]=i,mu[i]=-1;
for (j=1;j<=cnt&&i*Pi<=P;++j)
{
vis[i*Pi]=1; if (i%Pi) mu[i*Pi]=-mu[i]; else break;
}
}
for (i=1;i<=P;++i) sum[i]=sum[i-1]+mu[i];
}
#undef Pi
inline int min(int a,int b)
{
return a<b?a:b;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
for (Euler(),F.read(t);t;--t)
{
F.read(n); F.read(m); F.read(d); ans=0; int lim=min(n/d,m/d);
for (RI l=1,r;l<=lim;l=r+1)
{
r=min(n/(n/l),m/(m/l)); ans+=1LL*(n/(l*d))*(m/(l*d))*(sum[r]-sum[l-1]);
}
F.write(ans);
}
return F.Fend(),0;
}

Luogu P3455 [POI2007]ZAP-Queries的更多相关文章

  1. [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )

    题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...

  2. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  3. BZOJ 1101: [POI2007]Zap

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status] ...

  4. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  5. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  6. P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    题目 P3455 [POI2007]ZAP-Queries 解析 莫比乌斯反演. 给定\(n\),\(m\),\(d\),求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j ...

  7. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  8. [POI2007]Zap

    bzoj 1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descriptio ...

  9. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

随机推荐

  1. Chrome Inspect调试stetho出现空白的解决方法

    stetho可以使用chrome调试webview,有网友反映国内不行,亲测了一下是有解决方法的: Chrome://inspect 打开后会发现stetho的页面: 点击inspect,如果没有Fa ...

  2. SGCC_UAP启动停留在initializing java tooling(1%)

    找到uap的安装目录,eclipse文件夹下的eclipse.ini,用EditPlus打开,添加下面两行 -vmC:\Program Files\Java\jdk1.6.0_43\bin\ 在-vm ...

  3. iOS-WKWebView的使用

    参考文章:http://www.cocoachina.com/ios/20180831/24753.html WK时苹果在iOS8.0之后推出的控件,相比于UIWebView: 内存消耗少: 解决了网 ...

  4. eclipse下载教程

    Eclipse 是一个开放源代码的.基于 Java 的可扩展开发平台. Eclipse 是 Java 的集成开发环境(IDE),当然 Eclipse 也可以作为其他开发语言的集成开发环境,如C,C++ ...

  5. Xamarin是无懈可击还是鸡肋?浅谈对Xamarin的学习

    微软宣布跨平台已经有几个年头,当C#代码可以在其他平台运行时,我相信对于每个热爱.net的程序猿还是十分欣慰的,最近工作需要在一直研究和学习.net的跨平台开发Xamarin,网上对其优点总结也是一大 ...

  6. Unity Chan 2D Asset

    Unity Chan 2D Asset 4月份時,UNITY CHAN 官方網站推出了3D大島こはく,之後也有更新1.11版,而在六月12日時,則釋出了2D版本素材,一樣可以在UNITY CHAN 官 ...

  7. ORA-12538;ORA-12154;使用PL/SQL dve无法连接远程服务器上的oracle数据库,同时本机上也安装了一个oracle数据库

    问题描述:本人使用PL/SQL dve连接远程服务器上的oracle数据库,一直是没有问题的.我想提高下自己在数据库方面的能力就在自己的笔记本上安装了一个oracle数据库实例,安装并配置好之后,使用 ...

  8. Parameter infoDTOs of type T from private T com.ListVO.setInfoDTOs is not resolvable to a concrete type.

    WARN  org.glassfish.jersey.internal.Errors - The following warnings have been detected: WARNING: Par ...

  9. C#深度学习の----深拷贝与浅拷贝

    本人在进行编程的时候遇到一个问题,要对一个绑定的依赖属性进行赋值,改变属性中的某一部分,绑定的目标上的所有值都发生了变化,着并不是我想要的,由此引出深浅拷贝的问题.(请加群交流:435226676) ...

  10. Android事件处理第一节(View对Touch事件的处理)

    http://ipjmc.iteye.com/blog/1694146 在Android里Touch是很常用的事件,尤其实在自定义控件中,要实现一些动态的效果,往往要对Touch进行处理.Androi ...