Preface

分块,一个神奇的暴力算法。可以把很多\(O(n^2)\)的数据结构题的暴力优化到常数极小的\(O(n\sqrt n)\)。当一些毒瘤题无法用线段树,主席树,平衡树,树状数组......等\(O(n\ logn)\)方法写出时当然在你不会写这些算法的时候用大力分块骗分是再好不过的方法了!

当然分块的大致思想比较简单,我们看一下:

/Here is Pic 1

但是由于分块在实际应用中有不同的方法,所以让我们来找各种各样的板子题来练练手吧。


数列分块入门 1——区间加法,单点查值

这道题对于几乎所有的线性数据结构来说,这应该算是一个必修的操作了吧。

对于分块,我们一般就考虑两个问题:

  1. 对于块内的元素如何高效地操作(\(O(1)\)或\(O(log\ n)\))
  2. 对于快外的元素怎么暴力处理(\(O(\sqrt n)\)或\(O(log\ \sqrt n)\))

对于第一个问题,我们对每个完整的块打一个标记,然后两端不完整的部分我们直接遍历更新即可。

查询的时候讲它本身的值和它所在块的标记相加即可。

CODE

#include<cstdio>
#include<cctype>
#include<cmath>
using namespace std;
const int N=50005,BLO=250;
int n,a[N],size,blk[N],mark[BLO],opt,x,y,z;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline void write(int x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline int query(int x)
{
return mark[blk[x]]+a[x];
}
inline void modify(int l,int r,int k)
{
register int i;
for (i=l;i<=min(blk[l]*size,r);++i) a[i]+=k;
if (blk[l]!=blk[r]) for (i=(blk[r]-1)*size+1;i<=r;++i) a[i]+=k;
for (i=blk[l]+1;i<=blk[r]-1;++i) mark[i]+=k;
}
int main()
{
//freopen("1.in","r",stdin); freopen("1.out","w",stdout);
register int i; read(n); size=sqrt(n);
for (i=1;i<=n;++i)
read(a[i]),blk[i]=(i-1)/size+1;
for (i=1;i<=n;++i)
{
read(opt); read(x); read(y); read(z);
if (opt) write(query(y)),putchar('\n'); else modify(x,y,z);
}
return 0;
}

数列分块入门 2——区间加法,询问区间内小于某个值的元素个数

这道题其实在没有加法并且离线的情况下可以用主席树解决,但在这里似乎没有什么好的\(O(n\ logn)\)方法。

对于分块,区间加法的时候还是常规的块内打标记+块外暴力更新

但是询问小于某个值的元素个数又是什么鬼?

然后我们就发现,分块对于一般数据结构的优势就来了,我们可以对每一块进行排序

然后查询,二分了解一下。不过虽然修改的时候对于整块的顺序没有影响,但是我们对于两端的暴力就会影响相对顺序。

然后处理方法也很暴力,直接重新排序即可,复杂度约为\(O(n\sqrt n\cdot log\sqrt n)\)

CODE

#include<cstdio>
#include<cctype>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
const int N=50005,BLO=250;
int n,a[N],size,blk[N],mark[BLO],opt,x,y,z,tot;
vector <int> r[BLO];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline void write(int x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline int find(int id,int x)
{
int L=0,R=size-1,res=-1;
while (L<=R)
{
int mid=L+R>>1;
if (r[id][mid]<x) res=mid,L=mid+1; else R=mid-1;
}
return res+1;
}
inline void reset(int id)
{
register int i; r[id].clear();
for (i=(id-1)*size+1;i<=id*size;++i)
r[id].push_back(a[i]);
sort(r[id].begin(),r[id].end());
}
inline void modify(int l,int r,int x)
{
register int i;
for (i=l;i<=min(blk[l]*size,r);++i)
a[i]+=x; reset(blk[l]);
if (blk[l]!=blk[r])
{
for (i=(blk[r]-1)*size+1;i<=r;++i)
a[i]+=x; reset(blk[r]);
}
for (i=blk[l]+1;i<=blk[r]-1;++i) mark[i]+=x;
}
inline int query(int l,int r,int x)
{
register int i; int ans=0;
for (i=l;i<=min(blk[l]*size,r);++i) (a[i]+mark[blk[l]]<x)&&++ans;
if (blk[l]!=blk[r]) for (i=(blk[r]-1)*size+1;i<=r;++i) (a[i]+mark[blk[r]]<x)&&++ans;
for (i=blk[l]+1;i<=blk[r]-1;++i) ans+=find(i,x-mark[i]);
return ans;
}
int main()
{
//freopen("2.in","r",stdin); freopen("2.out","w",stdout);
register int i; read(n); size=sqrt(n); tot=(n-1)/size+1;
for (i=1;i<=n;++i)
read(a[i]),r[blk[i]=(i-1)/size+1].push_back(a[i]);
for (i=1;i<=tot;++i)
sort(r[i].begin(),r[i].end());
for (i=1;i<=n;++i)
{
read(opt); read(x); read(y); read(z);
if (opt) write(query(x,y,z*z)),putchar('\n'); else modify(x,y,z);
}
return 0;
}

数列分块入门 3——区间加法,询问区间内小于某个值的前驱

这道题有了上一道题的思路就很简单了。

几乎是一样的方法我是直接改了下上面的代码的,只不过是二分的几个细节改了下而已

CODE

#include<cstdio>
#include<cctype>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
const int N=100005,BLO=320;
int n,a[N],size,blk[N],mark[BLO],opt,x,y,z,tot;
vector <int> r[BLO];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; int flag=1; while (!isdigit(ch=tc())) flag=ch^'-'?1:-1;
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); x*=flag;
}
inline void write(int x)
{
if (x<0) putchar('-'),x=-x;
if (x>9) write(x/10); putchar(x%10+'0');
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline int max(int a,int b)
{
return a>b?a:b;
}
inline int find(int id,int x)
{
int L=0,R=size-1,res=-1;
while (L<=R)
{
int mid=L+R>>1;
if (r[id][mid]<x) res=r[id][mid],L=mid+1; else R=mid-1;
}
return ~res?res+mark[id]:-1;
}
inline void reset(int id)
{
register int i; r[id].clear();
for (i=(id-1)*size+1;i<=id*size;++i)
r[id].push_back(a[i]);
sort(r[id].begin(),r[id].end());
}
inline void modify(int l,int r,int x)
{
register int i;
for (i=l;i<=min(blk[l]*size,r);++i)
a[i]+=x; reset(blk[l]);
if (blk[l]!=blk[r])
{
for (i=(blk[r]-1)*size+1;i<=r;++i)
a[i]+=x; reset(blk[r]);
}
for (i=blk[l]+1;i<=blk[r]-1;++i) mark[i]+=x;
}
inline int query(int l,int r,int x)
{
register int i; int ans=-1;
for (i=l;i<=min(blk[l]*size,r);++i) (a[i]+mark[blk[l]]<x)&&(ans=max(ans,a[i]+mark[blk[l]]));
if (blk[l]!=blk[r]) for (i=(blk[r]-1)*size+1;i<=r;++i) (a[i]+mark[blk[r]]<x)&&(ans=max(ans,a[i]+mark[blk[r]]));
for (i=blk[l]+1;i<=blk[r]-1;++i) ans=max(ans,find(i,x-mark[i]));
return ans;
}
int main()
{
//freopen("3.in","r",stdin); freopen("3.out","w",stdout);
register int i; read(n); size=sqrt(n); tot=(n-1)/size+1;
for (i=1;i<=n;++i)
read(a[i]),r[blk[i]=(i-1)/size+1].push_back(a[i]);
for (i=1;i<=tot;++i)
sort(r[i].begin(),r[i].end());
for (i=1;i<=n;++i)
{
read(opt); read(x); read(y); read(z);
if (opt) write(query(x,y,z)),putchar('\n'); else modify(x,y,z);
}
return 0;
}

数列分块入门九题(一):LOJ6277~6279的更多相关文章

  1. 数列分块入门九题(三):LOJ6283~6285

    Preface 最后一题我一直觉得用莫队是最好的. 数列分块入门 7--区间乘法,区间加法,单点询问 还是很简单的吧,比起数列分块入门 7就多了个区间乘. 类似于线段树,由于乘法的优先级高于加法,因此 ...

  2. 数列分块入门九题(二):LOJ6280~6282

    Preface 个人感觉这中间的三题是最水的没有之一 数列分块入门 4--区间加法,区间求和 这个也是很多数据结构完爆的题目线段树入门题,但是练分块我们就要写吗 修改还是与之前类似,只不过我们要维护每 ...

  3. LOJ6285 数列分块入门9(分块)

    昨天对着代码看了一晚上 然后今天终于在loj上过了 数列分块入门9题撒花★,°:.☆( ̄▽ ̄)/$:.°★ . 然后相当玄学 块的大小调成\(\sqrt{n}\)会TLE,改成150就过了 啧 然后就 ...

  4. LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))

    #6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3   题目描述 给 ...

  5. LOJ6277~6285 数列分块入门

    Portals 分块需注意的问题 数组大小应为,因为最后一个块可能会超出的范围. 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 数列分块入门 1 给出一个长为的数列, ...

  6. loj 6278 6279 数列分块入门 2 3

    参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思 ...

  7. 数列分块入门1-9 By hzwer

    声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...

  8. LOJ——#6277. 数列分块入门 1

    ~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...

  9. [Loj] 数列分块入门 1 - 9

    数列分块入门 1 https://loj.ac/problem/6277 区间加 + 单点查询 #include <iostream> #include <cstdio> #i ...

随机推荐

  1. loadrunner 场景设计-IP Spoofer-多ip负载生成器(Windows平台)

    IP Spoofer-多ip负载生成器 by:授客 QQ:1033553122 1  适用协议 LoadRunner的多ip功能允许运行在单一负载生成器上的Vuser可以通过多ip被识别.服务器和路由 ...

  2. Android根据图片Uri获取图片path绝对路径的几种方法【转】

    在Android 编程中经常会用到Uri转化为文件路径,如我们从相册选择图片上传至服务器,一般上传前需要对图片进行压缩,这时候就要用到图片的绝对路径. 下面对我开发中uri转path路径遇到的问题进行 ...

  3. Scala多重继承及AOP

    package traitandclass /** * Created by zhen on 2018/8/23. */ class Human { println("Human" ...

  4. Derek解读Bytom源码-持久化存储LevelDB

    作者:Derek 简介 Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom ...

  5. go time类操作

    fmt.Println(time.Now().Format("2006-01-02 15:04:05")) # 这是个奇葩,必须是这个时间点, 据说是go诞生之日, 记忆方法:6- ...

  6. 遇到电脑IP地址冲突了怎么解决

    由于路由器是自动分配IP地址的,如果多个设备设置的是IP地址自动获取,就会出现IP地址冲突的情况当局域网内有相同IP,并且该机器启动了防火墙,那就没办法自动更新到下一个IP的地址了,所以此时发生了冲突 ...

  7. UOJ #390. 【UNR #3】百鸽笼

    UOJ #390. [UNR #3]百鸽笼 题目链接 看这道题之前先看一道相似的题目 [PKUWC2018]猎人杀. 考虑类似的容斥: 我们不妨设处理\(1\)的概率. 我们令集合\(T\)中的所有鸽 ...

  8. 函数中声明变量不用Var的情况

    我们都知道函数中声明变量不用Var时这个变量会成为全局变量,但是并不是函数一开始执行就会把它变为全局变量,必须执行到这条语句. 看一段代码 function f(){    alert(a);    ...

  9. BZOJ3295:[CQOI2011]动态逆序对(CDQ分治)

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  10. luogu P5151 HKE与他的小朋友

    嘟嘟嘟 看到\(i\)变成了\(A_i\),我突然想起了置换这个东西.于是马上到网上学了一遍轮换乘法. 手模后发现轮换乘法满足结合律,但不满足交换律. 于是就可以快速幂啦. 需要注意的是每一次相乘是\ ...