tf.expand_dims和tf.squeeze函数

一、tf.expand_dims()

Function

tf.expand_dims(input, axis=None, name=None, dim=None)

Inserts a dimension of 1 into a tensor’s shape. 
在第axis位置增加一个维度

Given a tensor input, this operation inserts a dimension of 1 at the dimension index axis of input’s shape. The dimension index axis starts at zero; if you specify a negative number for axis it is counted backward from the end.

给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。

This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape [height, width, channels], you can make it a batch of 1 image with expand_dims(image, 0), which will make the shape [1, height, width, channels].

如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

Args:

input: A Tensor. 
axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of input. 
name: The name of the output Tensor. 
dim: 0-D (scalar). Equivalent to axis, to be deprecated.

输入:张量。
轴:0-D(标量)。 指定扩大输入形状的维度索引。
名称:输出名称Tensor。
dim:0-D(标量)。 等同于轴,不推荐使用。

Returns:

A Tensor with the same data as input, but its shape has an additional dimension of size 1 added.

For example:

# 't' is a tensor of shape [2]

shape(expand_dims(t, 0)) ==> [1, 2]

shape(expand_dims(t, 1)) ==> [2, 1]

shape(expand_dims(t, -1)) ==> [2, 1]

# 't2' is a tensor of shape [2, 3, 5]

shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]

shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]

shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

二、tf.squeeze()

Function

tf.squeeze(input, squeeze_dims=None, name=None)

Removes dimensions of size 1 from the shape of a tensor. 
从tensor中删除所有大小是1的维度

Given a tensor input, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don’t want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying squeeze_dims.

给定张量输入,此操作返回相同类型的张量,并删除所有尺寸为1的尺寸。 如果不想删除所有尺寸1尺寸,可以通过指定squeeze_dims来删除特定尺寸1尺寸。
如果不想删除所有大小是1的维度,可以通过squeeze_dims指定。

Args:

input: A Tensor. The input to squeeze. 
squeeze_dims: An optional list of ints. Defaults to []. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. 
name: A name for the operation (optional).

输入:张量。 输入要挤压。
squeeze_dims:可选的ints列表。 默认为[]。 如果指定,只能挤压列出的尺寸。 维度索引从0开始。挤压不是1的维度是一个错误。
名称:操作的名称(可选)。

Returns:

A Tensor. Has the same type as input. Contains the same data as input, but has one or more dimensions of size 1 removed.

张量。 与输入的类型相同。 包含与输入相同的数据,但具有一个或多个删除尺寸1的维度。

For example:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]

shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]

shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

tensorflow 笔记14:tf.expand_dims和tf.squeeze函数的更多相关文章

  1. tf.expand_dims和tf.squeeze函数

    from http://blog.csdn.net/qq_31780525/article/details/72280284 tf.expand_dims() Function tf.expand_d ...

  2. tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask

    1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow ...

  3. tensorflow笔记:使用tf来实现word2vec

    (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔 ...

  4. tensorflow笔记4:函数:tf.assign()、tf.assign_add()、tf.identity()、tf.control_dependencies()

    函数原型: tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)   Defined in tensorflo ...

  5. tensorflow 笔记11:tf.nn.dropout() 的使用

    tf.nn.dropout:函数官网说明: tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined ...

  6. tensorflow笔记6:tf.nn.dynamic_rnn 和 bidirectional_dynamic_rnn:的输出,output和state,以及如何作为decoder 的输入

    一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: A ...

  7. tensorflow 笔记 16:tf.pad

    函数: tf.compat.v1.pad tf.pad 函数表达式如下: tf.pad(    tensor,    paddings,    mode='CONSTANT',    name=Non ...

  8. tensorflow踩坑合集2. TF Serving & gRPC 踩坑

    这一章我们借着之前的NER的模型聊聊tensorflow serving,以及gRPC调用要注意的点.以下代码为了方便理解做了简化,完整代码详见Github-ChineseNER ,里面提供了训练好的 ...

  9. 机器学习笔记5-Tensorflow高级API之tf.estimator

    前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...

随机推荐

  1. linux 学习笔记 mysql安装总结

    1 安装方式 下载2禁制源码安装包 mysql-5.5.27-linux2.6-i686.tar.gz 备注:2禁制额包解压缩后直接就可以使用 不用Make 2 步骤 shell>groupad ...

  2. asp.net core下的如何给网站做安全设置

    首先,我们来看下stack overflow网站的请求头文件: 可以看到一些我们熟悉或是陌生的HTTP头部文件字段.在这里我们在对HTTP输入流的头部文件中,做一些基本的防护.首先要明确,既然我们是对 ...

  3. SQL 客户端查看

    SELECT *FROM master.dbo.sysprocesses (nolock)ORDER BY hostname DESC

  4. Halcon 常用算子使用场合

    Chapter 1 :Classification 1.1 Gaussian-Mixture-Models 1.add_sample_class_gmm 功能:把一个训练样本添加到一个高斯混合模型的训 ...

  5. Lua的 table.sort排序

    在用table.sort 排序的时候注意,如果使用多个条件排序,应在一个排序函数里按照条件优先级进行比较排序. 例如 local t = { {time = , i = }, {time = , i ...

  6. 潭州课堂25班:Ph201805201 django 项目 第十三课 短信验证码后台的实现 (课堂笔记)

    d 发送短信验证码之前,后台要得到三个参数 : 1,用户手机吗,, 2,用户输入的图片验证文本, 3,前台的 uuid , 在60秒内是否有发送短信的记录 只有用户输入的手机号,文本信息与 uudi ...

  7. React-Native-Storage使用介绍

    react-native-storage 这是一个本地持久存储的封装,可以同时支持react-native(AsyncStorage)和浏览器(localStorage).ES6语法,promise异 ...

  8. CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]

    CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...

  9. 最优贸易 [NOIP 2009]

    Description C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  10. Java中map集合系列原理剖析

    看了下JAVA里面有HashMap.Hashtable.HashSet三种hash集合的实现源码,这里总结下,理解错误的地方还望指正 HashMap和Hashtable的区别 HashSet和Hash ...