CNN(卷积神经网络)的误差反传(error back propagation)中有一个非常关键的的步骤就是将某个卷积(Convolve)层的误差传到前一层的池化(Pool)层上,因为在CNN中是2D反传,与传统神经网络中的1D反传有点细节上的不同,下面通过一个简单的例子来详细分解一下这个反传步骤。

假设在一个CNN网络中,P代表某个池化层,K代表卷积核,C代表卷基层,首先来看一下前向(feed forward)计算,从一个池化层经过与卷积核(Kernel)的运算得到卷积层:

将前向计算的步骤进行分解,可以得到以下公式:

下面根据这个前向计算的步骤来分解出反向传播的步骤:

首先要确定误差传播的目的地,从deltaC到deltaP,所以先从deltaP1开始分析

从前面的前向计算过程中可以找出P1参与了C中哪些元素的计算,并且可以根据对应的前向计算得出反向传播的计算公式:

依次类推,还有如下公式:

对于P2

对于P3

对于P4

对于P5

一直可以推到P9

总结这9个反向传播的公式到一起:

进一步可以发现,这9个公式可以用如下的卷积过程来实现:

至此,从计算的细节上解释了为什么反向传播的时候要把卷积核旋转180°,并采用full的形式来进行卷积运算。

(注:上文所说的“卷积”被认为是一种不会180°旋转第二个因子的的计算过程,实际上matlab中的的conv2(a,b)会自动180°旋转b,换句话说,在matlab中实现这个步骤的时候不用提前旋转,留给conv2函数自行旋转即可)

CNN卷积核反传分析的更多相关文章

  1. CNN误差反传时旋转卷积核的简明分析(转)

    CNN(卷积神经网络)的误差反传(error back propagation)中有一个非常关键的的步骤就是将某个卷积(Convolve)层的误差传到前一层的池化(Pool)层上,因为在CNN中是2D ...

  2. 极简反传(BP)神经网络

    一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1, ...

  3. Caffe学习笔记(二):Caffe前传与反传、损失函数、调优

    Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动 ...

  4. nProtect APPGuard安卓反外挂分析

    工具与环境: IDA7.0 JEB2.2.5 Nexus 5 Android 4.4 目录: 一:app简单分析与java层反编译 二: compatible.so反调试与反反调试 三: compat ...

  5. 6. webshell文件上传分析溯源

    这道题也是借助大佬的帮助才成功,具体我们来看: 既然人家扫描发现后台目录有文件上传,我们也不能落后,顺便拿出了传说中的御剑,并进行一波扫描: 发现了几个比较有用的目录,特别是upload1.php跟u ...

  6. php---文件上传分析

    文件上传: 先抄一段:预定义变量$_FILES数组有5个内容:       $_FILES['userfile']['name']——客户端机器文件的原名称       $_FILES['userfi ...

  7. CNN卷积核计算

    作者:十岁的小男孩 目录 单层卷积核计算 三维卷积核计算 Padding=Valid&&Same 总结

  8. Python学习---抽屉框架分析[点赞功能/文件上传分析]0317

    点赞功能分析 前台传递过来新闻id[new_id]和session[session内有用户ID和用户之间的信息]到后台 后台News数据库内用户和新闻是多对多的关系,查看第三张表中的内容,判读用户Id ...

  9. CNN卷积核

    一.卷积操作有两个问题: 1. 图像越来越小: 2. 图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少.因此需要padding. 二.卷积核大小通常为奇数 1.一方面是为了方便same卷积pa ...

随机推荐

  1. linux 学习笔记 查看端口

    查看端口 #lsof -i  :端口号 |\根据端口号查看进程信息 例如:#lsof -i:8080 command pid  user fd  type  device size node java ...

  2. C# SQLiteHelper

    using System; using System.Data; using System.Data.Common; using System.Data.SQLite; using System.IO ...

  3. mongodb数据导入导出

    1.导出: 2.导入: 注意headline,导入一定要跳过第一行,第一行是列名

  4. mongoose事务操作,参考官网

    https://docs.mongodb.com/manual/reference/method/db.collection.bulkWrite/ await model.photo.bulkWrit ...

  5. HTTP 500 Invalid bound statement错误

    整合SSM框架的时候出现的错误,根据提示信息,找不到 dao.IUserDao.insertUser 方法,可能是mybatis的配置文件出现了问题. 在网上查了一些解决办法,说的最多的是mapper ...

  6. [USACO18JAN]Cow at Large P

    Description: 贝茜被农民们逼进了一个偏僻的农场.农场可视为一棵有 \(N\) 个结点的树,结点分别编号为 \(1,2,\ldots, N\) .每个叶子结点都是出入口.开始时,每个出入口都 ...

  7. [QTree6]Query on a tree VI

    Description: 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括 ...

  8. 编程菜鸟的日记-初学尝试编程-C++ Primer Plus 第4章编程练习4

    #include <iostream>#include <string>using namespace std;int main(){ string fname; string ...

  9. java第二周的学习知识3(==与equals)

    ==与equals()的之间的差别1)对于==,如果作用于基本数据类型的变量,则直接比较其存储的 “值”是否相等:如果作用于引用类型的变量,则比较的是所指向的对象的地址 2)对于equals方法,注意 ...

  10. KeepAlived+MySQL互为主从

    http://blog.csdn.net/socho/article/details/51804720 解决Master单点问题,两台mysql互为主备,双向replication.当一master挂 ...