ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值。

ROC曲线的例子

  考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。

TP:正确肯定的数目;

FN:漏报,没有正确找到的匹配的数目;

FP:误报,给出的匹配是不正确的;

TN:正确拒绝的非匹配对数;

列联表如下表所示,1代表正类,0代表负类。

  

    预测  
    1 0 合计
实际 1 True Positive(TP) False Negative(FN) Actual Positive(TP+FN)
  0 False Positive(FP) True Negative(TN) Actual Negative(FP+TN)
合计   Predicted Positive(TP+FP) Predicted Negative(FN+TN) TP+FP+FN+TN

从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是负正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1-FPR。

其中,两列True matches和True non-match分别代表应该匹配上和不应该匹配上的

两行Pred matches和Pred non-match分别代表预测匹配上和预测不匹配上的

  在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例 的比类,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC,ROC曲线可以用于评价一个分类器。

横轴FPR:  1-TNR,1-Specificity,  FPR越大,预测正类中实际负类越多。

纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。

理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

ROC曲线和它相关的比率

(a)理想情况下,TPR应该接近1,FPR应该接近0。

ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。

比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)

(b)P和N得分不作为特征间距离d的一个函数,随着阈值theta增加,TP和FP都增加

  Receiver Operating Characteristic,翻译为"接受者操作特性曲线",够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即负正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。

此外,ROC曲线还可以用来计算“均值平均精度”(mean average precision),这是当你通过改变阈值来选择最好的结果时所得到的平均精度(PPV).

  下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。  

Percentile 实例数 正例数 1-特异度(%) 敏感度(%)
10 6180 4879 2.73 34.64
20 6180 2804 9.80 54.55
30 6180 2165 18.22 69.92
40 6180 1506 28.01 80.62
50 6180 987 38.90 87.62
60 6180 529 50.74 91.38
70 6180 365 62.93 93.97
80 6180 294 75.26 96.06
90 6180 297 87.59 98.17
100 6177 258 100.00 100.00

其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。

二 如何画roc曲线

假设已经得出一系列样本被划分为正类的概率,然后按照大小排序,下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。

接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:

AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间。Auc作为数值可以直观的评价分类器的好坏,值越大越好。

首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。

二、AUC计算 

1.  最直观的,根据AUC这个名称,我们知道,计算出ROC曲线下面的面积,就是AUC的值。事实上,这也是在早期 Machine Learning文献中常见的AUC计算方法。由于我们的测试样本是有限的。我们得到的AUC曲线必然是一个阶梯状的。因此,计算的AUC也就是这些阶梯 下面的面积之和。这样,我们先把score排序(假设score越大,此样本属于正类的概率越大),然后一边扫描就可以得到我们想要的AUC。但是,这么 做有个缺点,就是当多个测试样本的score相等的时候,我们调整一下阈值,得到的不是曲线一个阶梯往上或者往右的延展,而是斜着向上形成一个梯形。此 时,我们就需要计算这个梯形的面积。由此,我们可以看到,用这种方法计算AUC实际上是比较麻烦的。

2. 一个关于AUC的很有趣的性质是,它和Wilcoxon-Mann-Witney Test是等价的。这个等价关系的证明留在下篇帖子中给出。而Wilcoxon-Mann-Witney Test就是测试任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score。有了这个定义,我们就得到了另外一中计 算AUC的办法:得到这个概率。我们知道,在有限样本中我们常用的得到概率的办法就是通过频率来估计之。这种估计随着样本规模的扩大而逐渐逼近真实值。这 和上面的方法中,样本数越多,计算的AUC越准确类似,也和计算积分的时候,小区间划分的越细,计算的越准确是同样的道理。具体来说就是统计一下所有的 M×N(M为正类样本的数目,N为负类样本的数目)个正负样本对中,有多少个组中的正样本的score大于负样本的score。当二元组中正负样本的 score相等的时候,按照0.5计算。然后除以MN。实现这个方法的复杂度为O(n^2)。n为样本数(即n=M+N) 
   3.  第三种方法实际上和上述第二种方法是一样的,但是复杂度减小了。它也是首先对score从大到小排序,然后令最大score对应的sample 的rank为n,第二大score对应sample的rank为n-1,以此类推。然后把所有的正类样本的rank相加,再减去M-1种两个正样本组合的情况。得到的就是所有的样本中有多少对正类样本的score大于负类样本的score。然后再除以M×N。即

公式解释:

1、为了求的组合中正样本的score值大于负样本,如果所有的正样本score值都是大于负样本的,那么第一位与任意的进行组合score值都要大,我们取它的rank值为n,但是n-1中有M-1是正样例和正样例的组合这种是不在统计范围内的(为计算方便我们取n组,相应的不符合的有M个),所以要减掉,那么同理排在第二位的n-1,会有M-1个是不满足的,依次类推,故得到后面的公式M*(M+1)/2,我们可以验证在正样本score都大于负样本的假设下,AUC的值为1

2、根据上面的解释,不难得出,rank的值代表的是能够产生score前大后小的这样的组合数,但是这里包含了(正,正)的情况,所以要减去这样的组(即排在它后面正例的个数),即可得到上面的公式

另外,特别需要注意的是,再存在score相等的情况时,对相等score的样本,需要 赋予相同的rank(无论这个相等的score是出现在同类样本还是不同类的样本之间,都需要这样处理)。具体操作就是再把所有这些score相等的样本 的rank取平均。然后再使用上述公式。

AUC(Area Under Curve)被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。

机器学习实践中分类器常用的评价指标就是auc,不想搞懂,简单用的话,记住一句话就行
auc取值范围[0.5,1],越大表示越好,小于0.5的把结果取反就行。

参考: http://blog.csdn.net/abcjennifer/article/details/7359370

      https://www.zybuluo.com/frank-shaw/note/152851

ROC曲线-阈值评价标准的更多相关文章

  1. ROC曲线(receiver-operating-characteristic curve)-阈值评价标准(转)

    转自:http://blog.csdn.net/abcjennifer/article/details/7359370 ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver ope ...

  2. ROC曲线,AUC面积

    AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本, ...

  3. (原+转)ROC曲线

    转自:http://baike.baidu.com/link?url=_H9luL0R0BSz8Lz7aY1Q_hew3JF1w-Zj_a51ggHFB_VYQljACH01pSU_VJtSGrGJO ...

  4. ROC曲线的概念和意义

    ROC曲线 受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve).得此名的原因 ...

  5. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  6. ROC曲线绘制

    ROC 曲线绘制 个人的浅显理解:1.ROC曲线必须是针对连续值输入的,通过选定不同的阈值而得到光滑而且连续的ROC曲线,故通常应用于Saliency算法评价中,因为可以选定0~255中任意的值进行阈 ...

  7. ROC曲线详解

    转自https://blog.csdn.net/qq_26591517/article/details/80092679 1 ROC曲线的概念 受试者工作特征曲线 (receiver operatin ...

  8. 机器学习:评价分类结果(ROC 曲线)

    一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...

  9. R语言︱ROC曲线——分类器的性能表现评价

    笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetiv ...

随机推荐

  1. java实现点选汉字验证码(转)

    package com.rd.p2p.web; import java.awt.BasicStroke; import java.awt.Color; import java.awt.Font; im ...

  2. oracle左连接连表查询

    要想把该表的数据全部查出来,必须select中出现该表的字段. SELECT distinct a.ZGSWSKFJ_DM,b.ZGSWJ_DM,b.SSGLY_DM,b.NSRSBH,b.NSRMC ...

  3. Java大数相加(多个大数相加)-hdu1250

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1250 题目描述: 题目大意是:已知一个Hat's Fibonacci序列,该序列满足F(1) = 1, ...

  4. linux的文件打包与压缩

    简介 Linux 上常用的压缩/解压工具,介绍了zip.rar.tar的使用. 文件打包和压缩 Linux 上的压缩包文件格式,除了 Windows 最常见的*.zip.*.rar..7z 后缀的压缩 ...

  5. c#一步一步实现ORM

    本篇适合新手了解学习orm.欢迎指正,交流学习. 现有的优秀的orm有很多. EF:特点是高度自动化,缺点是有点重. Nhibnate:缺点是要写很多的配置. drapper:最快的orm.但是自动化 ...

  6. js获取http请求响应头信息

    var req = new XMLHttpRequest(); req.open('GET', document.location, false); req.send(null); var heade ...

  7. log4j平稳升级到log4j2

    一.前言 公司中的项目虽然已经用了很多的新技术了,但是日志的底层框架还是log4j,个人还是不喜欢用这个的.最近项目再生产环境上由于log4j引起了一场血案,于是决定升级到log4j2. 二.现象 虽 ...

  8. MD5_Util工具类代码

    package com.yby.mall.utils; import java.math.BigInteger; import java.security.MessageDigest; public ...

  9. 记录Ubuntu & Windows下安装PyV8

    https://blog.csdn.net/hanshileiai/article/details/51628173

  10. linux相关操作命令

    1.复制文件:cp -r file ./src 2.删除文件:rm -rf file 3.解压文件:tar -xvf bianque.tar.gz