LOJ6045 雅礼集训 2017 Day8 价(最小割)
由Hall定理,任意k种减肥药对应的药材数量>=k。考虑如何限制其恰好为k,可以将其看作是使对应的药材数量尽量少。
考虑最小割。建一个二分图,左边的点表示减肥药,右边的点表示药材。减肥药和其使用的药材连inf边,这里的inf边较大,可以取到1e18;源向减肥药连inf-pi的边,表示不选这种减肥药会损失pi,这里的inf边较小,可以取到1e9;药材向汇连1e9的inf边,用来限制药材数量。容易发现最后的最小割中至少会割掉n条边,且割掉的边越少越优,而当恰好割掉n条边时,就对应了一种减肥药与药材数量相等的方案。直接跑最小割即可。这是一种针对多级限制的思想。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 610
#define S 0
#define T 601
#define inf 1000000000
#define INF 1000000000000000000ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],p[N],d[N],cur[N],q[N],t=-;
ll ans;
struct data{int to,nxt;ll cap,flow;
}edge[N*N<<];
void addedge(int x,int y,ll z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
ll work(int k,ll f)
{
if (k==T) return f;
ll used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
ll w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans-=work(S,INF);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj6045.in","r",stdin);
freopen("loj6045.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int m=read();
while (m--)
{
int x=read();
addedge(i,n+x,INF);
}
}
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++) addedge(S,i,inf-a[i]),ans+=inf-a[i];
for (int i=;i<=n;i++) addedge(n+i,T,inf);
dinic();
cout<<-ans;
return ;
}
LOJ6045 雅礼集训 2017 Day8 价(最小割)的更多相关文章
- $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流
正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...
- LOJ_6045_「雅礼集训 2017 Day8」价 _最小割
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...
- 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)
「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...
- loj #6046. 「雅礼集训 2017 Day8」爷
#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...
- loj6045 「雅礼集训 2017 Day8」价
我们考虑最小割. 我一开始觉得是裸的最小割,就直接S到每个减肥药连up+p[i]的边,减肥药到药材连inf边,药材到T连up,然后得到了40分的好成绩. 之后我发现这是一个假的最小割,最小割割的是代价 ...
- LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)
题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...
- 【LOJ6045】「雅礼集训 2017 Day8」价(网络流)
点此看题面 大致题意: 有\(n\)种药,每种药有一个权值,且使用了若干种药材.让你选择若干种药,使得药的数量与所使用的药材并集大小相等,求最小权值总和. 网络流 \(hl666\):这种数据范围,一 ...
- 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价
又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...
- [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]
题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...
随机推荐
- svn 从文件上次修改以来没有任何文件修改或加入。
现象:代码已经被修改过了,但是再往svn上提交代码时仍然提示: 从文件上次修改以来没有任何文件修改或加入. 解决办法: 1.找打存放代码的文件夹,右键——TortoiseSVN——clean up(清 ...
- Android中AsyncTask的使用
原文 https://blog.csdn.net/liuhe688/article/details/6532519 在Android中实现异步任务机制有两种方式,Handler和AsyncTask. ...
- 【Linux系统目录结构】
登录系统后,在当前命令窗口下输入 ls / 你会看到 以下是对这些目录的解释: /bin bin是Binary的缩写.这个目录存放着最经常使用的命令. /boot 这里存放的是启动Linux时使用的一 ...
- sql语句常用功能(null值转换为0)
COALESCE(规格,' ') 或者 COALESCE(规格,0) select * from ( ) 客户,() 物料号,p4.name 内部批次,p4.outsidename 外部批次,p1.库 ...
- 【强化学习】python 实现 q-learning 例四(例二改写)
将例二改写成面向对象模式,并加了环境! 不过更新环境的过程中,用到了清屏命令,play()的时候,会有点问题.learn()的时候可以勉强看到:P 0.效果图 1.完整代码 相对于例一,修改的地方: ...
- 基于 HTML5 Canvas 的 3D WebGL 机房创建
对于 3D 机房来说,监控已经不是什么难事,不同的人有不同的做法,今天试着用 HT 写了一个基于 HTML5 的机房,发现果然 HT 简单好用.本例是将灯光.雾化以及 eye 的最大最小距离等等功能在 ...
- Nginx的location配置规则梳理
Nginx几乎是当下绝大多数公司在用的web应用服务,熟悉Nginx的配置,对于我们日常的运维工作是至关重要的,下面就Nginx的location配置进行梳理: 1)location匹配的是nginx ...
- http 概念
什么是回调? 什么是同步/异步? 什么是I/O? 什么是单线/多线程? 什么是阻塞/非阻塞? 什么是事件? 什么是事件驱动? 什么是基于事件驱动的回调? 什么是事件循环?
- linux内核设计第七周——可执行程序的装载
- EnglishGame
https://github.com/zhangxue520/EnglishGame/blob/master/EnglishGame <程序设计实践I> 题目: 打字训练测试软 ...