由Hall定理,任意k种减肥药对应的药材数量>=k。考虑如何限制其恰好为k,可以将其看作是使对应的药材数量尽量少。

  考虑最小割。建一个二分图,左边的点表示减肥药,右边的点表示药材。减肥药和其使用的药材连inf边,这里的inf边较大,可以取到1e18;源向减肥药连inf-pi的边,表示不选这种减肥药会损失pi,这里的inf边较小,可以取到1e9;药材向汇连1e9的inf边,用来限制药材数量。容易发现最后的最小割中至少会割掉n条边,且割掉的边越少越优,而当恰好割掉n条边时,就对应了一种减肥药与药材数量相等的方案。直接跑最小割即可。这是一种针对多级限制的思想。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 610
#define S 0
#define T 601
#define inf 1000000000
#define INF 1000000000000000000ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],p[N],d[N],cur[N],q[N],t=-;
ll ans;
struct data{int to,nxt;ll cap,flow;
}edge[N*N<<];
void addedge(int x,int y,ll z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
ll work(int k,ll f)
{
if (k==T) return f;
ll used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
ll w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans-=work(S,INF);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj6045.in","r",stdin);
freopen("loj6045.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int m=read();
while (m--)
{
int x=read();
addedge(i,n+x,INF);
}
}
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++) addedge(S,i,inf-a[i]),ans+=inf-a[i];
for (int i=;i<=n;i++) addedge(n+i,T,inf);
dinic();
cout<<-ans;
return ;
}

LOJ6045 雅礼集训 2017 Day8 价(最小割)的更多相关文章

  1. $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...

  2. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  3. 【LYOI 212】「雅礼集训 2017 Day8」价(二分匹配+最大权闭合子图)

    「雅礼集训 2017 Day8」价 内存限制: 512 MiB时间限制: 1000 ms 输入文件: z.in输出文件: z.out   [分析] 蛤?一开始看错题了,但是也没有改,因为不会做. 一开 ...

  4. loj #6046. 「雅礼集训 2017 Day8」爷

    #6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领 ...

  5. loj6045 「雅礼集训 2017 Day8」价

    我们考虑最小割. 我一开始觉得是裸的最小割,就直接S到每个减肥药连up+p[i]的边,减肥药到药材连inf边,药材到T连up,然后得到了40分的好成绩. 之后我发现这是一个假的最小割,最小割割的是代价 ...

  6. LOJ#6045. 「雅礼集训 2017 Day8」价(最小割)

    题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\t ...

  7. 【LOJ6045】「雅礼集训 2017 Day8」价(网络流)

    点此看题面 大致题意: 有\(n\)种药,每种药有一个权值,且使用了若干种药材.让你选择若干种药,使得药的数量与所使用的药材并集大小相等,求最小权值总和. 网络流 \(hl666\):这种数据范围,一 ...

  8. 【思维题 最大权闭合子图】loj#6045. 「雅礼集训 2017 Day8」价

    又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现 ...

  9. [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]

    题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...

随机推荐

  1. java Switch中的case后面加上大括号({})和不加大括号的区别

    java基础求真之switch 的case 后面加上大括号和不加大括号的区别. 下面给出三段代码大家看一下有什么不同以及哪段代码能够编译通过那段代码编译不能通过,为什么?(Why?) 代码片段一: i ...

  2. jdk1.8安装后查看Java -version出错。

    最近在电脑行安装了多个jdk的版本 分别是jdk1.6,jdk1.7,jdk1.8三个版本,在配置环境变量的时候,选择的是jdk1.7; 但是奇怪的是,当我在cmd中输入java -version后, ...

  3. NOIP2002-2017提高组题解

    给个人认为比较难的题目打上'*' NOIP2002(clear) //一个很吼的贪心题,将平均数减掉之后从左往右将影响消除 #include<bits/stdc++.h> using na ...

  4. 截取字符串中最后一个中文词语(MS SQL)

    有朋友需求一个问题,就是处理一张表中某一字段,从这个字段中去截取内容中最后一个中文词语. ID SourceText Result 1 张达:U:1杨英苹:U:1,周忱:U:1,;苗桥:U:1,章玮: ...

  5. WPF中反转3D列表项

    原文:WPF中反转3D列表项 WPF中反转3D列表项                                                         周银辉记得在苹果电脑中有一个很酷的 ...

  6. Spring boot多模块(moudle)中的一个注入错误(Unable to start embedded container; nested exception is org)

    org.springframework.context.ApplicationContextException: Unable to start embedded container; nested ...

  7. 你要的fpga&数字前端笔面试题都在这儿了

    转自http://ninghechuan.com 你要的FPGA&数字前端笔面试题来了 FPGA&ASIC基本开发流程 题目:简述ASIC设计流程,并列举出各部分用到的工具. 勘误:C ...

  8. WPF 矩形框8个控制点伸缩及拖拽

    最近在研发图片控件矩形框8个控制点进行控制边框的大小.位置等信息,之前查阅了相关的信息,比如别人整合的类:ControlResizer 这个类虽然是好,但是很大程度上是有限制,换句话说,它需要你二次更 ...

  9. linux书籍

    <鸟哥私房菜-基础版> <实战LINUX_SHELL编程与服务器管理> <LINUX命令行与SHELL脚本编程大全第2版].布卢姆.扫描版> <Linux初学 ...

  10. poj1426 Find The Multiple(c语言巧解)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36335   Accepted: 151 ...