首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少。(虽然不用递推式也能显然地知道答案是2n-1)。

  类似地,lqp拆分有递推式f(n)=Σf(i)fib(n-i) (i=0~n-1)。由乘法分配律就可以推出。特别地,f(0)=1。

  又是一个卷积。是不是可以直接算了?啊要分治FFTn有1e6而且还不是NTT模数……肯定跑不过去啊。于是考虑生成函数。

  设其生成函数为F(x),斐波拉契数列的生成函数为FIB(x)。则F(x)=F(x)·FIB(x)+1。因为f(0)=1是我们的特殊规定所以补上1。即有F(x)=1/(1-FIB(x))。

  考虑求出FIB(x)的有限表示。可以把fib(n)的递推式也看做卷积。设a1=1,a2=1,则有fib(n)=Σfib(i)a(n-i)  (i=0~n-1)。而a的生成函数为A(x)=x+x2。那么有FIB(x)=FIB(x)·A(x)+x。有FIB(x)=x/(1-A(x))=x/(1-x-x2)。于是代入得F(x)=1/[1-x/(1-x-x2)]=1-x/(x2+2x-1)。

  这个求出来……多项式求逆?照样爆炸啊。

  据说可以用特征根。然而那是啥玩意啊?

  推了半天……不如打表!

  则显然f(n)=2f(n-1)+f(n-2)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define N 1000010
int n,f[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2173.in","r",stdin);
freopen("bzoj2173.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
f[]=,f[]=;
for (int i=;i<=n;i++) f[i]=((f[i-]<<)%P+f[i-])%P;
cout<<f[n];
return ;
}

BZOJ2173 整数的lqp拆分(生成函数)的更多相关文章

  1. [BZOJ2173]整数的lqp拆分

    [题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...

  2. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  3. 打表\数学【bzoj2173】: 整数的lqp拆分

    2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...

  4. BZOJ 2173: 整数的lqp拆分( dp )

    靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...

  5. BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分

    整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...

  6. 整数的lqp拆分

    题目大意 lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am&g ...

  7. [国家集训队]整数的lqp拆分

    我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...

  8. 洛谷4451 整数的lqp拆分(生成函数)

    比较水的一题.居然是一道没看题解就会做的黑题…… 题目链接:洛谷 题目大意:定义一个长度为 $m$ 的正整数序列 $a$ 的价值为 $\prod f_{a_i}$.($f$ 是斐波那契数)对于每一个 ...

  9. 洛谷P4451 [国家集训队]整数的lqp拆分(生成函数)

    题面 传送门 题解 我对生成函数一无所知 我们设\(F(x)\)为斐波那契数列的生成函数,\(G(x)\)为答案的生成函数,那么容易得到递推关系 \[g_n=\sum_{i=0}^{n-1}f_ig_ ...

随机推荐

  1. java算法----排序----(6)希尔排序(最小增量排序)

    package log; public class Test4 { /** * java算法---希尔排序(最小增量排序) * * @param args */ public static void ...

  2. BZOJ 2784 时间流逝

    BZOJ 2784 时间流逝 古典概率论... 可以发现由于能量圈数量限制,所以所构成的必定为树状结构(即便是转成最小能量圈和能量圈权值和之后存在重复状态,但是每个状态的含义不同,而且不能自身转移自身 ...

  3. [JSOI2016]无界单词[动态规划、kmp]

    题意 题目链接 分析 对于第一问,枚举最终串最小的相同前后缀来统计答案. 由于最小的相同前后缀也是无界单词,所以可以考虑先求解子问题. 定义状态 \(f(i)\) 表示长度为 \(i\) 的串中有多少 ...

  4. mybatis-高级结果映射之一对一

    mybatis的高级结果映射可以很轻松的帮助我们处理一对一, 一对多的数据关系. 1 数据准备 1.1 数据库 创建以下的名为 mybatis 的数据库, 并在其下创建4个表. 在此就不贴出来建表的 ...

  5. ElasticSearch实践系列(一):安装

    Elasticsearch简介 Elasticsearch是一个高度可扩展的开源全文搜索和分析引擎.它允许您快速,近实时地存储,搜索和分析大量数据.它通常用作底层引擎/技术,为具有复杂搜索功能和要求的 ...

  6. Linux下Redis主从复制以及SSDB主主复制环境部署记录

    前面的文章已经介绍了redis作为缓存数据库的说明,本文主要说下redis主从复制及集群管理配置的操作记录: Redis主从复制(目前redis仅支持主从复制模式,可以支持在线备份.读写分离等功能.) ...

  7. 在Mac终端显示 Git 当前所在分支

    1.进入你的home目录 cd ~ 2.编辑.bashrc文件 vi .bashrc 3.将下面的代码加入到文件的最后处 function git_branch { branch="`git ...

  8. [Android]记录一次处理app:transformDexArchiveWithExternalLibsDexMergerForDebug错误

    第一种情况: Android 目录结构如下: app中build.gradle包含: implementation 'com.squareup.okhttp3:okhttp:3.6.0' implem ...

  9. Linux内核分析 第七周 可执行程序的装载

    张嘉琪 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 Linux内核分析 第七 ...

  10. 基于SSH框架的考勤管理系统的设计与实现

    基于SSH框架的考勤管理系统的设计与实现