luogu P4515 [COCI2009-2010#6] XOR

描述

坐标系下有若干个等腰直角三角形,且每个等腰直角三角形的直角顶点都在左下方,两腰与坐标轴平行。被奇数个三角形覆盖的面

积部分为灰色,被偶数个三角形覆盖的面积部分为白色,如下图所示。

已知 NN个等腰直角三角形的顶点坐标及腰长,求灰色部分面积。

输入输出格式

输入格式:

输入第一行包含一个整数 NN,表示等腰直角三角形数量。

接下来 NN行,每行三个整数 X, Y, RX,Y,R,分别表示等腰直角三角形的顶点坐标 (X, Y)(X,Y)与腰长 RR。

输入输出样例

输入样例#1: 复制

3
1 1 2
7 1 6
5 3 4

输出样例#1:

24.0

这是自己做出的第一道容斥题(除了一些SB容斥),虽然这道题也不算太难,而且我做了一个晚上。总之就是自己在容斥上还是太菜了。

还是来说题吧。首先要会求多个三角形的交。显然这道题中两个等腰直角的交还是一个等腰直角三角形。我的做法是分类讨论,不如洛谷上题解那么简洁,于是就不说了。

重点是算出容斥系数。我们设个三角形的交的容斥系数为。显然。对于1" class="mathcode" src="https://private.codecogs.com/gif.latex?i%3E1">,的情况,我们先设初值,显然如果为奇数,那么初值为1,否则为0。然后我们要容斥去重。。计算个三角形的交的时候,个三角形的交会被计算次。

然后通过观察证明可以知道

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#include<iomanip>
#define ll long long
#define N 11 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n;
ll ans;
ll f[N];
ll c[N][N];
struct tri {ll x,y,r;}s[N],tem,g;
void work(tri a,tri b) {
if(a.y>b.y) swap(a,b);
if(a.x<=b.x) {
int r=min(b.r,a.r-(b.x+b.y-a.x-a.y));
if(r<0) return g.r=-1,void();
g=b;
g.r=r;
} else {
int r=min(a.y+a.r-b.y,b.x+b.r-a.x);
if(r<0) return g.r=-1,void();
g.x=a.x,g.y=b.y;
g.r=r;
}
}
void dfs(int v,ll x,ll y,ll r,int tot) {
if(r<=0&&tot) return ;
if(v>n) {
if(!tot) return ;
ans+=r*r*f[tot];
return ;
}
dfs(v+1,x,y,r,tot);
if(!tot) {
dfs(v+1,s[v].x,s[v].y,s[v].r,tot+1);
} else {
tem.x=x,tem.y=y,tem.r=r;
work(s[v],tem);
dfs(v+1,g.x,g.y,g.r,tot+1);
}
}
int main() {
n=Get();
c[0][0]=1;
for(int i=1;i<=n;i++) {
for(int j=0;j<=i;j++) {
c[i][j]=(!j||i==j)?1:c[i-1][j-1]+c[i-1][j];
}
}
for(int i=1;i<=n;i++) {
f[i]=(i&1)?1:0;
for(int j=1;j<i;j++) {
f[i]-=f[j]*c[i][j];
}
}
//f[i]=(-1)^(i+1)*2^(i-1)
for(int i=1;i<=n;i++) {
s[i].x=Get(),s[i].y=Get(),s[i].r=Get();
}
dfs(1,0,0,0,0);
cout<<fixed<<setprecision(1)<<1.0*ans/2;
return 0;
}

luogu P4515 [COCI2009-2010#6] XOR的更多相关文章

  1. luogu P4515 [COCI2009-2010#6] XOR 容斥

    LINK:XOR 一个不常见的容斥套路题. 以往是只求三角形面积的交 现在需要求被奇数次覆盖的区域的面积. 打住 求三角形面积的交我也不会写 不过这道题的三角形非常特殊 等腰直角 且直角点都在左下方 ...

  2. [Luogu P4180][BJWC 2010]严格次小生成树

    严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行.原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的 ...

  3. luogu P4385 [COCI2009]Dvapravca

    传送门 我真的弱,正解都不会还打了个错的暴力 考虑平行线与x轴平行,那么可以按照y为第一关键字升序,x为第二关键字升序排序,然后合法的一段红点就是连续的一段,答案也就是最大的连续红色段 推广到一般情况 ...

  4. POJ 1703 Find them, Catch them(并查集高级应用)

    手动博客搬家:本文发表于20170805 21:25:49, 原地址https://blog.csdn.net/suncongbo/article/details/76735893 URL: http ...

  5. luogu P2574 XOR的艺术 (线段树)

    luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...

  6. [luogu]P1800 software_NOI导刊2010提高(06)[DP][二分答案]

    [luogu]P1800 software_NOI导刊2010提高(06) 题目描述 一个软件开发公司同时要开发两个软件,并且要同时交付给用户,现在公司为了尽快完成这一任务,将每个软件划分成m个模块, ...

  7. Luogu P1801 黑匣子_NOI导刊2010提高(06)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

  8. 【luogu P1774 最接近神的人_NOI导刊2010提高(02)】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1774 归并排序求逆序对. #include <cstdio> #define livelove ...

  9. 【luogu P1801 黑匣子_NOI导刊2010提高(06)】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1801 替罪羊树吼啊! #include <cstdio> #include <cstrin ...

随机推荐

  1. 偏流角(Draft Angle)在等距螺旋中的作用

    劳动改变人,思维改变世界.我们可以接着聊螺旋线了. 在飞行程序设计中,偏流角(Draft Angle简写为DA)通常指得是受侧风影响航向偏移的最大角度.用速度向量来表示时,是图1中的三角形关系: 图1 ...

  2. sort、sorted高级排序-Python3.7 And 算法<七>

    1.sort(*, key=None, reverse=False) sort()接受两个参数,这两个参数只能通过关键字(关键字参数)传递. 参数key:带一个参数的函数(排序时,会依次传入列表的每一 ...

  3. JavaSE 常用类与其方法

    1.基本数据类型比较用:== 2.引用数据类型比较用:equals方法 如果引用数据类型使用==比较的话,比较的是地址值 toString类 对象调用toString()需要重写本方法: 在封装类中, ...

  4. 【Java并发编程】6、volatile关键字解析&内存模型&并发编程中三概念

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以 ...

  5. 使用vue-cli开发过程中如何把jQuery设置为全局

    说明:vue-cli是vue快速构建项目的命令行式开发模式. vue主要针对数据层,更多的操作在数据上,很少在DOM上,偶尔也会需要操作DOM,偶尔也会用到JQ插件,下面简单说下如何在使用vue-cl ...

  6. python之初始面向对象

    1. 初识面向对象  面向过程: 一切以事务的发展流程为中心. 面向对象: 一切以对象为中心. 一切皆为对象. 具体的某一个事务就是对象 2. 类. 对象 类: 就是图纸. 创建对象的第一步. 先画图 ...

  7. SoapUI SoapUI测试WebService协议接口简介

    SoapUI测试WebService协议接口简介 by:授客 QQ:1033553122 1. 创建项目,入口:File -> New SOAP Project,或者右键默认项目Project- ...

  8. 排错-安装SQl 2008“为SQL Server代理服务提供的凭据无效的解决方法

    安装SQl 2008“为SQL Server代理服务提供的凭据无效的解决方法 by:授客 QQ:1033553122 在Windows Server 2008安装SQL Server 2008出现的问 ...

  9. 2018下半年Android面试历程

    个人看法:可以总结下他的面试经历以及涉及到的面试题 下面开始正文吧: 从今年下半年以来就开始在杭州准备简历找工作了,原因基本都懂的,没多少工资,投递简历的渠道是Boss,偶尔也在拉钩上投递,刚开始把简 ...

  10. Cookie的HttpOnly、secure、domain属性

    Cookie主要属性 Cookie主要属性: path domain max-age expires:是expires的补充,现阶段有兼容性问题:IE低版本不支持,所以一般不单独使用 secure h ...