ACM-ICPC 2018 南京赛区网络预赛 E题

题目链接: https://nanti.jisuanke.com/t/30994

Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p{i, 1}pi,1-th, p{i, 2}pi,2-th, ......, p{i, s_i}pi,si-th problem before.(0 < p{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n)After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me.""No problem."—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

看到了n<20, 很显然就是要状态压缩了。

然后那个前提条件,其实就是状态转移时候的条件了,只要判断一下就可以了。

状态压缩就是用一个二进制数来表示当前的状态,这个数需要有n个二进制位,如果为0表示没有submit这个题,1表示submit了。

dp[i]表示到状态i获得的最多points. 根据i有多少1就知道现在的时间了(每分钟submit一个)。

具体看代码吧。

#include <bits/stdc++.h>
using namespace std;


int bit[22];

int a[22];
int b[22];
int state[22];

long long dp[1<<20];
int numbit[1<<20];
const long long INF = 1000000000000000LL;

int main() {
bit[0] = 1;
for (int i = 1; i < 22; i++)
bit[i] = bit[i-1]<<1;
numbit[0] = 0;
for (int i = 1; i < bit[20]; i++) {
numbit[i] = 1 + numbit[i&(i-1)];
}
int n;
while(scanf("%d", &n) == 1) {
for (int i = 0; i < n; i++) {
scanf("%d%d", &a[i], &b[i]);
int s;
scanf("%d", &s);
int tmp = 0;
state[i] = 0;
while (s--) {
scanf("%d", &tmp);
state[i] |= bit[tmp-1];
}
}
dp[0] = 0;
for (int i = 1; i < bit[n]; i++)dp[i] = -INF;
long long ans = 0;
for (int i = 0; i < bit[n]; i++) {
if (dp[i] == -INF)continue;
ans = max(ans, dp[i]);
for (int j = 0; j < n; j++) {
if (i & bit[j])continue;
if ((i&state[j]) != state[j])continue;
dp[i|bit[j]] = max(dp[i|bit[j]], dp[i] + (long long)(numbit[i]+1)*a[j] + b[j]);
}
}
cout<<ans<<endl;

}
return 0;
}

  

https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Nanjing-online-E/

ACM-ICPC 2018 南京赛区网络预赛 E题的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)

    题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...

  2. ACM-ICPC 2018 南京赛区网络预赛 L题(分层最短路)

    题目链接:https://nanti.jisuanke.com/t/31001 题目大意:给出一个含有n个点m条边的带权有向图,求1号顶点到n号顶点的最短路,可以使<=k条任意边的权值变为0. ...

  3. ACM-ICPC 2018 南京赛区网络预赛 L题(分层图,堆优化)

    题目链接: https://nanti.jisuanke.com/t/31001 超时代码: #include<bits/stdc++.h> using namespace std; # ...

  4. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  5. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

  6. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  7. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  8. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  9. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

随机推荐

  1. 【CF666E】Forensic Examination

    题解: 熟练掌握了后缀自动机后大部分题目应该都比较容易想 首先对t建立广义后缀自动机 然后我们可以用线段树合并处理出每个点每个串出现的次数,然后求出最大值 匹配的时候比较巧妙 我们离线处理 对于同一个 ...

  2. MVC和Web API 过滤器Filter

    MVC和Web API Filter(过滤器) ASP.NET MVC 支持以下类型的操作筛选器: ·        授权筛选器.这些筛选器用于实现IAuthorizationFilter和做出关于是 ...

  3. COMException: The data necessary to complete this operation is not yet available.

    问题描述: 最近在公司AE项目中遇到了下面的问题: COMException: The data necessary to complete this operation is not yet ava ...

  4. Java中常见的排序方式-选择排序(升序)

    [基本思想] 假设数组为int[] a = { 49, 38, 65, 97, 76, 13, 27 },数组元素个数为7个. 第1轮比较:先是a[0]与a[1]比较,大于则先交换,再比较a[0]和a ...

  5. Oozie

    Oozie的功能模块 workflow 由多个工作单元组成 工作单元之间有依赖关系 MR1->MR2->MR3->result hadoop jar:提交1个MR oozie:监控当 ...

  6. LeetCode 234. 回文链表

    class Solution { public: bool isPalindrome(ListNode* head) { deque<int> d1, d2; ListNode* p = ...

  7. Django之ORM操作总结

    Django之ORM总结 表结构 from django.db import models # 一对多:班级与学生 # 多对多:班级与老师 # Create your models here. #创建 ...

  8. Django的请求生命周期

    Django的请求生命周期 请求生命周期 请求生命周期是指当用户在浏览器上输入url到用户看到网页的这个时间段内,Django后台所发生的事情. 1.客户端发送Http请求 2 .服务器接收,根据请求 ...

  9. MySQL安装目录修改

  10. C# SQLiteHelper

    using System; using System.Data; using System.Data.Common; using System.Data.SQLite; using System.IO ...