HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)
题意
\(n\) 局石头剪刀布,设每局的贡献为赢的次数与输的次数之 \(\gcd\) ,求期望贡献乘以 \(3^{2n}\) ,定义若 \(xy=0\) 则,\(\gcd(x,y)=x+y\)
思路
不难得出
\]
对于正整数 \(n\) ,有如下表达式
\]
那么
\]
注意欧拉函数是不取到零的,若要严谨的写,零应该特判。
在外层枚举 \(d\) ,并只枚举为 \(d\) 倍数的 \(i,j\) ,
\]
另外,利用表达式
\]
还可以化简后式(虽然对复杂度没有影响。。)
\]
变成了卷积的形式,后面于 \(i+j\) 有关的项就当作最后乘出多项式的常数。
复杂度的证明如下
T(n)&=\displaystyle\sum_{i=1}^n {n\over i}\log{n\over i}\\
&\geq \displaystyle\sum_{i=1}^n {n\over i}\log{n}\\
&= \log n\displaystyle\sum_{i=1}^n {n\over i}\\
&\geq n\log n\ln n
\end{array}
\]
那么此题可解。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
using namespace std;
template<typename T,typename _T>inline bool chk_min(T &x,const _T y){return y<x?x=y,1:0;}
template<typename T,typename _T>inline bool chk_max(T &x,const _T y){return x<y?x=y,1:0;}
typedef long long ll;
const double PI=acos(-1.0);
const int N=1<<17|5;
namespace _Maths
{
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x),y-=a/b*x;
}
ll Pow(ll a,ll p,ll P)
{
ll res=1;
for(;p>0;p>>=1,(a*=a)%=P)if(p&1)(res*=a)%=P;
return res;
}
ll inv(ll a,ll P){ll x,y;exgcd(a,P,x,y);return (x%P+P)%P;}
};
using namespace _Maths;
int P;
struct Complex
{
double x,y;
Complex operator +(const Complex &_)const{return (Complex){x+_.x,y+_.y};}
Complex operator -(const Complex &_)const{return (Complex){x-_.x,y-_.y};}
Complex operator *(const Complex &_)const{return (Complex){x*_.x-y*_.y,x*_.y+y*_.x};}
Complex operator /(const int &_)const{return (Complex){x/_,y/_};}
};
namespace _Polynomial
{
const int K=(1<<15)-1,L=15;
Complex A[N<<1],B[N<<1],C[N<<1],D[N<<1];
Complex w[N<<1];int r[N<<1];
void DFT(Complex *a,int op,int n)
{
FOR(i,0,n-1)if(i<r[i])swap(a[i],a[r[i]]);
for(int i=2;i<=n;i<<=1)
for(int j=0;j<n;j+=i)
for(int k=0;k<i/2;k++)
{
Complex u=a[j+k],t=w[op==1?n/i*k:(n-n/i*k)&(n-1)]*a[j+k+i/2];
a[j+k]=u+t,a[j+k+i/2]=u-t;
}
if(op==-1)FOR(i,0,n-1)a[i]=a[i]/n;
}
void multiply(const int *a,const int *b,int *c,int n1,int n2)
{
int n=1;
while(n<n1+n2-1)n<<=1;
FOR(i,0,n1-1)A[i]=(Complex){a[i]&K,a[i]>>L};
FOR(i,0,n2-1)B[i]=(Complex){b[i]&K,b[i]>>L};
FOR(i,n1,n-1)A[i]=(Complex){0,0};
FOR(i,n2,n-1)B[i]=(Complex){0,0};
FOR(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
FOR(i,0,n-1)w[i]=(Complex){cos(2*PI*i/n),sin(2*PI*i/n)};
DFT(A,1,n),DFT(B,1,n);
FOR(i,0,n-1)
{
int j=(n-i)&(n-1);
C[i]=(Complex){0.5*(A[i].x+A[j].x),0.5*(A[i].y-A[j].y)}*B[i];
D[i]=(Complex){0.5*(A[i].y+A[j].y),0.5*(A[j].x-A[i].x)}*B[i];
}
DFT(C,-1,n),DFT(D,-1,n);
FOR(i,0,n1+n2-2)
{
ll s=C[i].x+0.5,t=C[i].y+0.5,u=D[i].x+0.5,v=D[i].y+0.5;
c[i]=(s+((t+u)%P<<L)%P+(v%P<<L<<L)%P)%P;
}
}
};
int A[N],B[N],C[N<<1];
int phi[N],fac[N],ifac[N];
int n;
void init()
{
fac[0]=fac[1]=1;FOR(i,2,n)fac[i]=(ll)fac[i-1]*i%P;
ifac[0]=ifac[1]=1;FOR(i,2,n)ifac[i]=(ll)(P-P/i)*ifac[P%i]%P;
FOR(i,2,n)ifac[i]=(ll)ifac[i-1]*ifac[i]%P;
FOR(i,1,n)phi[i]=i;
FOR(i,2,n)if(phi[i]==i)
for(int j=i;j<=n;j+=i)
phi[j]=phi[j]/i*(i-1);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&P);
init();
ll ans=0;
FOR(d,1,n)
{
ll sum=0;
FOR(i,1,n/d)A[(i)-1]=ifac[i*d];
FOR(i,1,n/d)B[(i)-1]=ifac[i*d];
_Polynomial::multiply(A,B,C,n/d,n/d);
FOR(i,1,n/d)(sum+=(ll)C[(i)-2]*ifac[n-i*d]%P)%=P;
(ans+=sum*phi[d]%P)%=P;
}
ans=(ans*Pow(3,n,P)%P*fac[n]%P+Pow(6,n,P)*n%P)%P;
printf("%lld\n",(ans+P)%P);
}
return 0;
}
HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)的更多相关文章
- hdu 1286:找新朋友(数论,欧拉函数)
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HDU 2824.The Euler function-筛选法求欧拉函数
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2…pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...
- (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)
题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- HDU 6088 - Rikka with Rock-paper-scissors | 2017 Multi-University Training Contest 5
思路和任意模数FFT模板都来自 这里 看了一晚上那篇<再探快速傅里叶变换>还是懵得不行,可能水平还没到- - 只能先存个模板了,这题单模数NTT跑了5.9s,没敢写三模数NTT,可能姿势太 ...
- 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)
2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...
- HDU 2824 简单欧拉函数
1.HDU 2824 The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 5430 Reflect(欧拉函数)
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 ...
- HDU 4483 Lattice triangle(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...
随机推荐
- wamp 进入到项目中找不到localhost
重点在 www 目录的 index.php 里面,把里面没有第一句没有被注释的话: $suppress_localhost = true; 改成 $suppress_localhost = false ...
- mybatis14--注解的配置
去掉对应的mapper映射文件 在dao文件中增加注解 public interface StudentDao { /** * 新增学生信息 */ @Insert(value="insert ...
- Laravel使用Form(转载)
laravel到了5.1.*以上版本,便没有了illuminate/html类库的支持, 我试着把illuminate/html类库加入了laravel5.2,依然没有用, 但是laravelcoll ...
- Codeforces 607A - Chain Reaction - [DP+二分]
题目链接:https://codeforces.com/problemset/problem/607/A 题意: 有 $n$ 个塔排成一行,第 $i$ 个激光塔的位置为 $a_i$,伤害范围是 $b_ ...
- dataTransfer对象
HTML5拖拽的数据传输 虽然通过dragstart.drag和dragend事件实现了原生拖拽.但是这仅仅是拖拽,在IE6和IE7中还是有些拖拽问题,并且也没有实现数据的交换.为了实现数据的交换,I ...
- 电力电子MATLAB
1.电力电子仿真时,要加一个powergui 2.变压器Multi-Winding Transformer 其中额定电压比就是匝数比,并且变压器上的电压不能超过额定电压 上图这一项表示变压器的容量和频 ...
- 【Python全栈-后端开发】Django入门基础-2
Django入门基础知识-2 一 .模版 一.模版的组成 HTML代码+逻辑控制代码 二.逻辑控制代码的组成 1 变量(使用双大括号来引用变量) {{var_name}} 2 标签(tag)的使用 ...
- HTML链接式引入CSS和JS
<!-调用CSS-> <link href="./XXXXX.css" rel="stylesheet" type="text/cs ...
- SimplifyReader项目(转载)
项目地址: https://github.com/SkillCollege/SimplifyReader SkillCollege / SimplifyReader 一款基于Google Materi ...
- oracle 日期取 月 日
今天碰到只要取月份和天数,如果月份前面有0要去掉0.比如说2010-01-08 ,需要的结果是1-8. 引出了一系列的sql语句 第一: 利用to_number的函数转换自动截0 select to_ ...