大神解答

一.前提

最一般的状态估计问题,我们会根据系统是否线性,把它们分为线性/非线性系统。同时,对于噪声,根据它们是否为高斯分布,分为高斯/非高斯噪声系统。现实中最常见的,也是最困难的问题,是非线性-非高斯(NLNG, Nonlinear-Non Gaussian)的状态估计。下面先说最简单的情况:线性高斯系统。

线性高斯系统

在线性高斯系统中,运动方程、观测方程是线性的,且两个噪声项服从零均值的高斯分布。这是最简单的情况。简单在哪里呢?主要是因为高斯分布经过线性变换之后仍为高斯分布。而对于一个高斯分布,只要计算出它的一阶和二阶矩,就可以描述它(高斯分布只有两个参数)。
  线性系统形式如下:
  其中是两个噪声项的协方差矩阵;为转移矩阵和观测矩阵;表示的后验概率,用表示它的先验概率。因为系统是线性的,噪声是高斯的,所以状态也服从高斯分布,需要计算它的均值和协方差矩阵。记第时刻的状态服从:
  对LG系统,可以用贝叶斯法则,计算的后验概率分布——这条路直接通向卡尔曼滤波器。卡尔曼是线性系统的递推形式(recursive,也就是从估计)的无偏最优估计。

(其中过程可以参考贝叶斯法则-最大似然估计

现在的问题是如何求解这个最大化问题。对于高斯分布,最大化问题可以变成最小化它的负对数。当我对一个高斯分布取负对数时,它的指数项变成了一个二次项,而前面的因子则变为一个无关的常数项,可以略掉(这部分我不敲了,有疑问的同学可以问)。于是,定义以下形式的最小化函数:

写成矩阵的形式,类似最小二乘的问题:

  于是令它的导数为零,得到:
 
  读者会问,这个问题和卡尔曼滤波有什么问题呢?事实上,卡尔曼滤波就是递推地求解上式的过程。所谓递推,就是只用来计算。对(*)进行Cholesky分解,就可以推出卡尔曼滤波器。只把卡尔曼的结论写一下:

另一方面,能否直接求解(*)式,得到呢?答案是可以的,而且这就是优化方法(batch optimization):将所有的状态放在一个向量里,进行求解。与卡尔曼滤波不同的是,在估计前面时刻的状态(如)时,会用到后面时刻的信息(等)。从这点来说,优化方法和卡尔曼处理信息的方式是相当不同的。

二.扩展卡尔曼滤波器 --- EKF自己总结(针对非线性非高斯系统)

滤波器自己的局限性:
  1. 即使是高斯分布,经过一个非线性变换后也不是高斯分布。EKF只计算均值与协方差,是在用高斯近似这个非线性变换后的结果。(实际中这个近似可能很差)。
  2. 系统本身线性化过程中,丢掉了高阶项。
  3. 线性化的工作点往往不是输入状态真实的均值,而是一个估计的均值。于是,在这个工作点下计算的,也不是最好的。
  4. 在估计非线性输出的均值时,EKF算的是的形式。这个结果几乎不会是输出分布的真正期望值。协方差也是同理。

那么,怎么克服以上的缺点呢?途径很多,主要看我们想不想维持EKF的假设。如果我们比较乖,希望维持高斯分布假设,可以这样子改:

    1. 为了克服第3条工作点的问题,我们以EKF估计的结果为工作点,重新计算一遍EKF,直到这个工作点变化够小,为迭代EKF(Iterated EKF, IEKF)。
    2. 为了克服第4条,我们除了计算,再计算其他几个精心挑选的采样点,然后用这几个点估计输出的高斯分布。是为Sigma Point KF(SPKF,或UKF)。

如果不那么乖,可以说:我们不要高斯分布假设,凭什么要用高斯去近似一个长得根本不高斯的分布呢?于是问题变为,丢掉高斯假设后,怎么描述输出函数的分布就成了一个问题。一种比较暴力的方式是:用足够多的采样点,来表达输出的分布。这种蒙特卡洛的方式,也就是粒子滤波(PF的思路。
  如果再进一步,可以丢弃滤波器思路,说:为什么要用前一个时刻的值来估计下一个时刻呢我们可以把所有状态看成变量,把运动方程和观测方程看成变量间的约束,构造误差函数,然后最小化这个误差的二次型。这样就会得到非线性优化的方法,在SLAM里就走向图优化那条路上去了。不过,非线性优化也需要对误差函数不断地求梯度,并根据梯度方向迭代,因而局部线性化是不可避免的。
  可以看到,在这个过程中,我们逐渐放宽了假设。

三.IEKF

四.UKF无迹卡尔曼滤波

五. PF 粒子滤波

六. CKF 容积卡尔曼滤波

七. 非线性优化

非线性优化,计算的也是最大后验概率估计(MAP),但它的处理方式与滤波器不同。对于上面写的状态估计问题,可以简单地构造误差项:
  然后最小化这些误差项的二次型:
       这里仅用到了噪声项满足高斯分布的假设,再没有更多的了。当构建一个非线性优化问题之后,就可以从一个初始值出发,计算梯度(或二阶梯度),优化这个目标函数。常见的梯度下降策略有牛顿法、高斯-牛顿法、Levenberg-Marquardt方法。
  非线性优化方法现在已经成为视觉SLAM里的主流,尤其是在它的稀疏性质被人发现且利用起来之后。它与滤波器最大不同点在于,

一次可以考虑整条轨迹中的约束。它的线性化,即雅可比矩阵的计算,也是相对于整条轨迹的。相比之下,滤波器还是停留在马尔可夫的假设之下,只用上一次估计的状态计算当前的状态。可以用一个图来表达它们之间的关系:
  当然优化方式也存在它的问题。例如优化时间会随着节点数量增长——所以有人会提double window optimization这样的方式,以及可能落入局部极小。但是就目前而言,它比EKF还是优不少的。

总结

  1. 卡尔曼滤波是递归的线性高斯系统最优估计。
  2. EKF将NLNG系统在工作点附近近似为LG进行处理。
  3. IEKF对工作点进行迭代。
  4. UKF没有线性化近似,而是把sigma point(采样点)进行非线性变换后再用高斯近似。
  5. PF去掉高斯假设,以粒子作为采样点来描述分布。
  6. 优化方式同时考虑所有帧间约束,迭代线性化求解。
PS:
  SLAM中,状态变量经常是六自由度的位姿,由旋转矩阵和平移向量构成。然而问题是,旋转矩阵并不存在加法,只有对应到李代数上才可以清楚地定义它的运算。因此,当我们讨论这个位姿的噪声,说它服从高斯分布时,需要了解李群李代数的知识。

kalman滤波(三)---各种滤波的方法汇总+优化的方法的更多相关文章

  1. 无法启动MYSQL服务”1067 进程意外终止”解决的方法——汇总及终极方法

    自己一開始依照百度经验里的方法--<MySQL下载安装.配置与使用(win7x64)>去安装和配置,可是到后面步骤总是出现1067代号的错误. 慢慢折腾去解决. 这里汇总各种导致mysql ...

  2. javascript 动态修改css样式方法汇总(四种方法)

    在很多情况下,都需要对网页上元素的样式进行动态的修改.在JavaScript中提供几种方式动态的修改样式,下面将介绍方法的使用.效果.以及缺陷. 1.使用obj.className来修改样式表的类名. ...

  3. 学习 opencv---(8)非线性滤波:中值滤波,双边滤波

    正如我们上一篇文章中讲到的,线性滤波可以实现很多种不同的图像变换.然而非线性滤波,如中值滤波器和双边滤波器,有时可以达到更好的实现效果. 邻域算子的其他一些例子还有对 二值图像进行操作的形态学算子,用 ...

  4. 学习 opencv---(7) 线性邻域滤波专场:方框滤波,均值滤波,高斯滤波

    本篇文章中,我们一起仔细探讨了OpenCV图像处理技术中比较热门的图像滤波操作.图像滤波系列文章浅墨准备花两次更新的时间来讲,此为上篇,为大家剖析了"方框滤波","均值滤 ...

  5. OpenCV导向滤波(引导滤波)实现(Guided Filter)代码,以及使用颜色先验算法去雾

    论文下载地址:http://research.microsoft.com/en-us/um/people/jiansun/papers/GuidedFilter_ECCV10.pdf 本文主要介绍导向 ...

  6. OpenCV计算机视觉学习(4)——图像平滑处理(均值滤波,高斯滤波,中值滤波,双边滤波)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice &q ...

  7. 你真的会玩SQL吗?实用函数方法汇总

    你真的会玩SQL吗?系列目录 你真的会玩SQL吗?之逻辑查询处理阶段 你真的会玩SQL吗?和平大使 内连接.外连接 你真的会玩SQL吗?三范式.数据完整性 你真的会玩SQL吗?查询指定节点及其所有父节 ...

  8. Atitit   图像处理 平滑 也称 模糊, 归一化块滤波、高斯滤波、中值滤波、双边滤波)

    Atitit   图像处理 平滑 也称 模糊, 归一化块滤波.高斯滤波.中值滤波.双边滤波) 是一项简单且使用频率很高的图像处理方法 用途 去噪 去雾 各种线性滤波器对图像进行平滑处理,相关OpenC ...

  9. UITextView实现placeHolder方法汇总

    UITextField中有一个placeholder属性,可以设置UITextField的占位文字,起到提示用户的作用.可是UITextView就没那么幸运了,apple没有给UITextView提供 ...

随机推荐

  1. _Bool and bool

    _Bool is the defined before C99. bool has been defined in C99. bool is an alias for _Bool if you inc ...

  2. Java中的接口和抽象类

    接口和抽象类是Java设计中最基本的概念,它们都不能实例化对象,都可以实现多态,也都能用来创建匿名内部类.但实际使用上还有很多的不同. 两者的语法定义不同,对应的设计抽象关系也不同,接口主要是对行为的 ...

  3. HTTPS协议加密原理解析

    用 HTTP 协议,看个新闻还没有问题,但是换到更加严肃的场景中,就存在很多的安全风险.例如你要下单做一次支付,如果还是使用普通的 HTTP 协议,那你很可能会被黑客盯上. 比如,你发送一个请求,说我 ...

  4. Matlab关于视觉问题中的一些自有API

    [randsample/randperm] y = randsample(n,k);从1:n中随机抽取k个数. y=  randperm(n)或者y=  randperm(n,k) [rectint] ...

  5. 在宿主机查看docker使用cpu、内存、网络、io情况

    命令: docker stats [OPTIONS] [CONTAINER...] 显示所有: docker stats -a

  6. redis 4.x 安装哨兵模式 sentinel

    1.下载 http://download.redis.io/releases/redis-4.0.11.tar.gz 2.解压 tar zxvf redis-4.0.11.tar.gz 3.安装 cd ...

  7. C语言数组指针

    C语言中的数组指针与指针数组: ·数组指针一.区分 首先我们需要了解什么是数组指针以及什么是指针数组,如下: int *p[5];int (*p)[5];数组指针的意思即为通过指针引用数组,p先和*结 ...

  8. springMVC框架返回JSON到前端日期格式化

    在Controller类中,需要返回JSON的方法上加上注释@ResponseBody,这是必须的. 然后spring-servlet.xml配置如下: <?xml version=" ...

  9. Linux背背背(1)

    目录: 1.文件目录 2.基本语法 3.centos7之后的版本中查看ip地址 4.~ 5.修改时间 ------------------------------------------------- ...

  10. Python 内置os模块的简单实用

    获取路径&目录添加文件 在自动化测试的过程,考虑到工程文件的移动或者在其他人的工作环境中运行,所以我们的路径要灵活,不能把路径写死. 推荐使用Python的内置模块OS 参照图 import ...