P1430 序列取数

题目描述

给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取)。每个人可从序列的左端或右端取若干个数(至少一个),但不能两端都取。所有数都被取走后,两人分别统计所取数的和作为各自的得分。假设\(A\)和\(B\)都足够聪明,都使自己得分尽量高,求\(A\)的最终得分。

输入输出格式

输入格式:

第一行,一个正整数\(T\),表示有\(T\)组数据。\((T<=100)\)

接着\(T\)行,每行第一个数为\(n\),接着\(n\)个整数表示给定的序列.

输出格式:

输出\(T\)行,每行一个整数,表示\(A\)的得分


看到足够聪明,我下意识以为是博弈论。。

但是似乎并不是,而且我想不出来怎么做。


对于取剩下的子序列\([i,j]\),先手有一个可求的最大得分值。

令\(dp[i][j]\)为子序列\([i,j]\)时,先手取可得的最大分数。

\(dp[i][j]=max(sum[i][j],sum[i][j]-min\{dp[i+k_1][j],dp[i][j-k_2],k_1\in[1,j-i],k_2\in[1,j-i]\})\)

分别对应先手者(于此步的)选全部,选左边的一段选右边的一段三种情况。

我们发现这是三维的,需要枚举\(k\)。

优化?

拿\(l[i][j]\)维护\(min\{dp[i+k_1][j],k_1\in[1,j-i]\}\)

拿\(r[i][j]\)维护\(min\{dp[i][j-k_2],k_2\in[1,j-i]\}\)

当然,这两个东西的更新都是\(O(1)\)的

细节:注意区间DP的枚举顺序性


code:

#include <cstdio>
#include <cstring>
const int N=1010;
int max(int x,int y) {return x>y?x:y;}
int min(int x,int y) {return x>y?y:x;}
int n,t;
int a[N],f[N],dp[N][N],l[N][N],r[N][N];
//l[i][j]=min{dp[i][j],dp[i+1][j]...dp[j][j]};
int read()
{
int x=0,ff=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-') ff=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return ff*x;
} int main()
{
t=read();
for(int k=1;k<=t;k++)
{
n=read();
memset(f,0,sizeof(f));
memset(dp,0,sizeof(dp));
memset(l,0,sizeof(l));
memset(r,0,sizeof(r));
for(int i=1;i<=n;i++)
{
a[i]=read();
f[i]=f[i-1]+a[i];
}
for(int i=1;i<=n;i++)
{
dp[i][i]=a[i];
l[i][i]=a[i];
r[i][i]=a[i];
}
for(int i=n-1;i>=1;i--)
for(int j=i+1;j<=n;j++)
{
int sum=f[j]-f[i-1];
dp[i][j]=max(sum,max(sum-l[i+1][j],sum-r[i][j-1]));
l[i][j]=min(l[i+1][j],dp[i][j]);
r[i][j]=min(r[i][j-1],dp[i][j]);
}
printf("%d\n",dp[1][n]);
}
return 0;
}

2018.5.1

洛谷 P1430 序列取数 解题报告的更多相关文章

  1. 洛谷 P1430 序列取数

    如果按照http://www.cnblogs.com/hehe54321/p/loj-1031.html的$O(n^3)$做法去做的话是会T掉的,但是实际上那个做法有优化的空间. 所有操作可以分解为由 ...

  2. [洛谷P1430]序列取数

    题目大意:给定一个序列$s$,每个人每轮可以从两端(任选一端)取任意个数的整数,不能不取.在两个人都足够聪明的情况下,求先手的最大得分. 题解:设$f_{i,j}$表示剩下$[i,j]$,先手的最大得 ...

  3. 洛谷 P2022 有趣的数 解题报告

    P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...

  4. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  5. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  6. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  7. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  8. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  9. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

随机推荐

  1. pandas:解决groupby().apply()方法打印两次

    对于以下dataframe执行dataframe.groupby(['name', 'course']).apply(lambda x: test(x)) 操作 其中test(x)函数为: def t ...

  2. 基于MongodbDB的用户认证-运维笔记

    MongoDB默认是不认证的,默认没有账号,只要能连接上服务就可以对数据库进行各种操作,MongoDB认为安全最好的方法就是在一个可信的环境中运行它,保证之后可信的机器才能访问它,可能这些对一些要求高 ...

  3. Mysqldump备份说明及数据库备份脚本分享-运维笔记

    MySQLdump是MySQL自带的导出数据工具,即mysql数据库中备份工具,用于将MySQL服务器中的数据库以标准的sql语言的方式导出,并保存到文件中.Mysqldump是一个客户端逻辑备份的工 ...

  4. Centos7下ELK+Redis日志分析平台的集群环境部署记录

    之前的文档介绍了ELK架构的基础知识,日志集中分析系统的实施方案:- ELK+Redis- ELK+Filebeat - ELK+Filebeat+Redis- ELK+Filebeat+Kafka+ ...

  5. 运维中的日志切割操作梳理(Logrotate/python/shell脚本实现)

    对于Linux系统安全来说,日志文件是极其重要的工具.不知为何,我发现很多运维同学的服务器上都运行着一些诸如每天切分Nginx日志之类的CRON脚本,大家似乎遗忘了Logrotate,争相发明自己的轮 ...

  6. 百度之星-day1-1003-度度熊剪纸条

    度度熊剪纸条 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  7. Scrum Meeting 8

                第八次会议 No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 No_11:照片记录 待更新 No_100:代码/文档签入记录 No_101:出席表 ...

  8. Max length of title attribute in html

    测了一下chrome是1024个utf-8字符. 具体可见: http://stackoverflow.com/questions/8516235/max-length-of-title-attrib ...

  9. mysql复杂查询1

    https://blog.csdn.net/fly910905/article/details/79846949

  10. [读书笔记]Linux命令行与shell编程读书笔记04 安装软件,编辑器注意事项

    1. debian以及redhat两种主流的linux发行版用的包管理工具 debian的包管理工具是 dpkg 再现安装的是 apt apt的工具主要有 apt-get apt-cache apti ...