【2020NOI.AC省选模拟#5】C. 光滑序列
题目链接
原题解:
光滑的序列一定有长度为$K$的循环节。
使用动态规划,设$F(i,j)$为使前$i$个整数的和为$j$的最小修改次数。
记$cost(i,v)$为令$A_i,A_{i+K},A_{i+2K},\cdots$等于$v$需要而修改次数。则$F(i,j)=\min\limits_v \{F(i-1,j-v)+cost(i,v)\}$。
可以发现,$A_i,A_{i+K},A_{i+2K},\cdots$中至多有$O(\dfrac{N}{K})$个不同的值。
我们可以先用$F(i,j)=\min \limits_v \{F(i-1,j-v)+\left\lfloor \dfrac{N-i}{K} \right\rfloor +1\}$一次性转移没有在这些位置中出现过的$v$,然后再对这$O(\dfrac{N}{K})$个$v$单独转移。
复杂度为$O(KS\times \dfrac{N}{K})=O(NS)$。
补充:
$O(N^2)$比$O(N^3)$改进的地方是两点:
- 使用$f(i-1,j)$的前缀最小值来设定$f(i,j)$的初值。
- 枚举增加的数进行转移,于是可以判断这种数存不存在,进而减少无效转移。因为模$K$相同的位置只有$O(\dfrac{N}{K})$个,所以复杂度就对了。
代码(100分):
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define IL inline
#define RG register
using namespace std;
#define RI RG int
#define RC RG char
const int N=5000; int n,k,s,a[N+3];
int b[N+3][N+3],c[N+3];
int f[N+3][N+3]; int main(){
scanf("%d%d%d",&n,&k,&s);
for(RI i=1;i<=n;i++)
scanf("%d",&a[i]); for(RI i=1,t=1;i<=n;i++,t+1>k?t=1:t++){
b[t][a[i]]++;
c[t]++; } for(RI i=1;i<=s;i++)
f[0][i]=n+1;
f[0][0]=0;
for(RI i=1;i<=k;i++){
for(RI j=0,x=f[i-1][0];j<=s;j++){
x=min(x,f[i-1][j]);
f[i][j]=x+c[i]; } for(RI j=0;j<=s;j++)
if(b[i][j])
for(RI p=j;p<=s;p++)
f[i][p]=min(f[i][p],f[i-1][p-j]+c[i]-b[i][j]); } printf("%d",f[k][s]); return 0; }
【2020NOI.AC省选模拟#5】C. 光滑序列的更多相关文章
- NOI.AC省选模拟赛第一场 T1 (树上高斯消元)
link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...
- [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]
题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...
- [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]
题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...
- [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]
题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...
- [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]
题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...
- [NOI.AC省选模拟赛3.23] 集合 [数学]
题面 传送门 一句话题意: 给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$ 设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lb ...
- [noi.ac省选模拟赛]第12场题解集合
题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...
- [noi.ac省选模拟赛]第10场题解集合
题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...
- [noi.ac省选模拟赛]第11场题解集合
题目 比赛界面. T1 比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配. 尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...
- [noi.ac省选模拟赛20200606]赌怪
题目 点这里看题目. 分析 先特判掉\(K=2\)的情况. 首先可以考虑到一个简单 DP : \(f(i)\):前\(i\)张牌的最大贡献. 转移可以\(O(n^2)\)地枚举区间 ...
随机推荐
- file、blob、base64相互转换
blob blob转file const blob = '.....' const file = new File([blob], 'name.wav', {type: 'audio/wav'}); ...
- vue3 门户网站搭建6-wangeditor
门户网站的新闻.公告等文章,内容可配置,故引入 wagneditor 1.安装: npm i wangeditor 2.方便调用,抽成组件: <template> <div ref= ...
- 基于MIPI的高性能成像系统
硬件组件Digilent Genesys ZU × 1 (FPGA平台) Digilent PCAM5 × 1 (MIPI摄像头) 软件组件AMD-Xilinx Vivado 设计套件 介绍从简单的嵌 ...
- 工作频率运行在3.0 ~ 4.5 GHz的高效率GaAs HBT MMIC驱动放大器-CBG9326
国内使用UWB高精度室内定位的行业应用产品,工作频段大部分都在3.5Ghz-6GHz低频段(Channel 2(特定场景如管隧矿)和Channel 5)范围,因此只能应用于煤矿.监狱等封闭的小众市场. ...
- linux内核中根据函数指针追踪调用函数名
2 linux内核中根据函数指针追踪调用函数名 linux内核的printks可以输出函数指针对应的函数名. printk("func: %pF at address: %p\n" ...
- 修改 Ubuntu 的软件源
1.将 /etc/apt/ 路径下的 sources.list 的内容修改为如下内容(此内容为 Ubuntu Kylin 里面的内容,直接拿过来用,也可以用其它的国内的源). deb http://m ...
- fetch 小分析
includes\database\prefetch.inc line 385 public function fetchField($index = 0) { return $this->fe ...
- ADT 更新遇到的一个BUG解决方案【转】
蠻長一陣子沒有更新ADT,正好Android 5.0 Release有一段時間,就順勢更新: 當按下Next後進行更新ADT 23.0.4 途中卻發生如下圖的問題: An error occurred ...
- css 多行隐藏
overflow: hidden; text-overflow: ellipsis; display: -webkit-box; -webkit-line-clamp: 1; -webkit-box- ...
- APP的文件数据直传腾讯云COS实践
简介 本文主要介绍基于腾讯云对象存储COS,如何快速实现一个app的文件直传功能.您的服务器上只需要生成和管理访问密钥,无需关心细节,文件数据都存放在腾讯云 COS 上. 架构说明 对于app应用,把 ...