展开

题目背景

给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。

题目描述

输入格式

第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。

输出格式

给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。

输入输出样例

输入 #1复制

2 2 1
1 1 2 2
1 2

输出 #1复制

1

说明/提示

【数据规模】

1≤N,M≤5

题外话:这是一道非常非常经典的DFS的题,请刚学DFS的童鞋先看这个再去看八皇后!

分析:

还是强调:这是一道DFS的入门题,请用了其他方法的童鞋改用DFS。

第一步:

输入,这个不用我多说了吧。

第二步:

分析:

这是一个迷宫,我们从1,1开始往外搜,我们可以把DFS理解成一个非常着急的热血青年(“怎么每次都是我出丑”),他沿着一条路一直走,从来不考虑有什么分叉口,只是一直走,知道走到死胡同了,才发现,走不了了。

他一跺脚就往回走,走到半路有发现一条路,两眼放光!就一直走了下去。就这样,功夫不负有心人,他终于出来了!

于是乎,就可以写出以下代码。

int dx[4]={1,0,-1,0};
int dy[4]={0,1,0,-1};
void dfs(int x,int y)
{
if(x==n&&y==m)//这学过递归的人都知道
{
ans++;
return;
}
else
{
a[x][y]=1;//标记,因为走过的路不能再走了。
for(int i=0;i<=3;i++)//枚举三种可行路线
{
int tx=x+dx[i],ty=y+dy[i];
if(边界条件&&如果可以走或者是终点)dfs(tx,ty);//搜索
}
}
}

然后,热血青年又拿起键盘,敲下了这段代码,然后,他就发现,错了!

分析 :

这道题是一道DFS的题,我们就会想到回溯,但是有些人只是知道,但不知道是什么意思,回溯是必须要打开思路的,不能不会!(回溯其实一开始很难理解,但是后面就自然而然的想到了)。

来,按照递归的思路,如果这个是死胡同,那么他就会返回上一步,继续走。如果是这样的话,来看!

你以为这样就没事了吗?我们来把自己模拟成一个爱装逼的XXS,你必须要一次性走完这个迷宫

那你要怎么完成这个任务呢?

我们可以想到,如果走到死胡同,就把我们走的标记擦掉!走到最后,你就会发现,真的是一条完成的路线!

有的人就会想了,我又不是XXS,为什么我要擦掉呢?

因为:这个死胡同你走了,标记成1,回溯,你就会发现,如果走另外一条路线,这个点是不能走的!为什么?因为你把它标记成1,没把它变回来啊!

所以,我们要在函数后面回溯,把这个点擦掉,这就行了!

第三步:

输出,完美结束!؏؏ᖗ乛◡乛ᖘ؏؏

完整代码(大家可以思考一下为什么我要在回溯的时候加个if(建议用输出,把一步步搜索的过程打印出来))

#include <bits/stdc++.h>
using namespace std;
int a[7][7];
int dx[4]={-1,0,1,0};
int dy[4]={0,-1,0,1};
int ans=0;
void dfc(int x,int y,int n,int m){//开始!
if(a[x][y]==10){
ans++;
return;
}
a[x][y]=3;
for(int i=0;i<4;i++){
int tx=x+dx[i],ty=y+dy[i];//临时
if(tx>0 and tx<=n and ty>0 and ty<=m and (a[tx][ty]==0 or a[tx][ty]==10)){
dfc(tx,ty,n,m);
if(a[tx][ty]!=10)a[tx][ty]=0;
}
}
}
int main() {
int n,m,t;
cin>>n>>m>>t;
int sa,sy,tx,ty;
cin>>sa>>sy>>tx>>ty;
a[sa][sy]=8;a[tx][ty]=10;
for(int i=0;i<t;i++){
int zx,zy;
cin>>zx>>zy;
a[zx][zy]=1;
}
dfc(sa,sy,n,m);
cout<<ans;
return 0;
}

本文作者:Phrvth(八皇后我会在下周更新,请大家想想看(特别是斜线的判断))

这是八皇后

P1605迷宫——题解的更多相关文章

  1. 洛谷—— P1605 迷宫

    P1605 迷宫 题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在 ...

  2. 洛谷 P1605 迷宫

    题目链接 https://www.luogu.org/problemnew/show/P1605 题目背景 迷宫 题目描述 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 ...

  3. P1605 迷宫

    P1605 迷宫 这是一道毒瘤题... 这是一道广搜题 bfs ... 代码: #include<cstdio> #include<iostream> #include< ...

  4. 01迷宫题解(bfs,联通块)

    题目https://www.luogu.org/problemnew/show/P1141 这个题解主要针对我个人出现的一些问题和注意的地方. 解题思路 首先说一下联通块 联通块这个比较抽象,举个例子 ...

  5. 洛谷P1605 迷宫——S.B.S.

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  6. 洛谷P1238 走迷宫题解

    题目描述 有一个m*n格的迷宫(表示有m行.n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这m*n个数据和起始点.结束点(起始点和结束点都是用两个数据来描述的,分别表示 ...

  7. 【搜索1】P1605 迷宫

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  8. (DFS)P1605 迷宫 洛谷

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  9. P1605 迷宫 dfs回溯法

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

随机推荐

  1. java:找不到符号

    出现这种情况的原因之一:实体类的字段修改过.实体类中的变量名修改.然而其他地方调用的字段名还是修改之前的变量.

  2. 彻底学会Selenium元素定位

    转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/63099961.html 你好,我是测试蔡坨坨. 最近收到不少初学UI自动化测试的小伙伴私信,对于元素的定位还是有些头疼,总 ...

  3. SQL中的转义字符和通配符

    一.通配符 如果想查找"_cs"结尾的的账户   select * from [user] where loginname like '%_cs'是不行的,  _ 被认为是任意的字 ...

  4. ML-决策树

    信息增益 香农熵: 指混乱程度,越混乱,值越大 信息增益(information gain): 在划分数据集前后信息发生的变化称为信息增益(香农熵的差) 基尼不纯度也可度量集合的无序程度 香农熵的计算 ...

  5. VS Code插件推荐

    VS Code插件推荐 ​ VS Code作为前端开发人员在学习工作中必不可少的开发软件,其强大的功能以及丰富多样的插件都让开发人员爱不释手.下面推荐个人觉得还不错的几个插件,希望可以帮助到你.如果你 ...

  6. Redisson源码解读-公平锁

    前言 我在上一篇文章聊了Redisson的可重入锁,这次继续来聊聊Redisson的公平锁.下面是官方原话: 它保证了当多个Redisson客户端线程同时请求加锁时,优先分配给先发出请求的线程.所有请 ...

  7. ubuntu20.04修改静态ip不生效问题

    一.前言 最近从头开始配置hadoop的时候,由于想切换到NAT模式下配置hadoop,但在修改ip的时候发现设置了静态ip,但ip不生效,查了很多资料,发现由于配置信息写错了. 二.解决问题 ifc ...

  8. 2022-11-06 Acwing每日一题

    本系列所有题目均为Acwing课的内容,发表博客既是为了学习总结,加深自己的印象,同时也是为了以后回过头来看时,不会感叹虚度光阴罢了,因此如果出现错误,欢迎大家能够指出错误,我会认真改正的.同时也希望 ...

  9. Kubernetes安装GitLab

    个人名片: 对人间的热爱与歌颂,可抵岁月冗长 Github‍:念舒_C.ying CSDN主页️:念舒_C.ying 个人博客 :念舒_C.ying Kubernetes安装GitLab Step 1 ...

  10. 小程序canvas2D绘制印章,话不多说,直接上代码

    效果图:  CanvasContext 是旧版的接口,不维护了, 新版 Canvas 2D 接口与 Web 一致 官方文档: https://developers.weixin.qq.com/mini ...