【实战】yolov8 tensorrt模型加速部署

TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10、linux,在2023年已经更新模型:YOLOv8, YOLOv7, YOLOv6, YOLOv5, YOLOv4, YOLOv3, YOLOX, YOLOR,pphumanseg,u2net,EfficientDet。

Windows10教程正在制作,可以关注仓库:https://github.com/FeiYull/TensorRT-Alpha

一、加速结果展示

1.1 性能速览

快速看看yolov8n 在移动端RTX2070m(8G)的新能表现:

model video resolution model input size GPU Memory-Usage GPU-Util
yolov8n 1920x1080 8x3x640x640 1093MiB/7982MiB 14%

下图是yolov8n的运行时间开销,单位是ms:

更多TensorRT-Alpha测试录像在B站视频:

B站:YOLOv8n

B站:YOLOv8s

1.2精度对齐

下面是左边是python框架推理结果,右边是TensorRT-Alpha推理结果。

yolov8n : Offical( left ) vs Ours( right )

yolov7-tiny : Offical( left ) vs Ours( right )

yolov6s : Offical( left ) vs Ours( right )

yolov5s : Offical( left ) vs Ours( right )

YOLOv4 YOLOv3 YOLOR YOLOX略。

二、linux环境配置

如果您对tensorrt不是很熟悉,请务必保持下面库版本一致。

2.1 安装工具链和opencv

sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install git
sudo apt-get install gdb
sudo apt-get install cmake
sudo apt-get install libopencv-dev
# pkg-config --modversion opencv

2. 安装Nvidia相关库

注:Nvidia相关网站需要注册账号。

2.1 安装Nvidia显卡驱动

ubuntu-drivers devices
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-driver-470-server # for ubuntu18.04
nvidia-smi

2.2 安装 cuda11.3

  • 进入链接: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择:CUDA Toolkit 11.3.0(April 2021)
  • 选择:[Linux] -> [x86_64] -> [Ubuntu] -> [18.04] -> [runfile(local)]

    在网页你能看到下面安装命令,我这里已经拷贝下来:
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run

cuda的安装过程中,需要你在bash窗口手动作一些选择,这里选择如下:

  • select:[continue] -> [accept] -> 接着按下回车键取消Driver和465.19.01这个选项,如下图(it is important!) -> [Install]



    bash窗口提示如下表示安装完成
#===========
#= Summary =
#=========== #Driver: Not Selected
#Toolkit: Installed in /usr/local/cuda-11.3/
#......

把cuda添加到环境变量:

vim ~/.bashrc

把下面拷贝到 .bashrc里面

# cuda v11.3
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-11.3

刷新环境变量和验证

source ~/.bashrc
nvcc -V

bash窗口打印如下信息表示cuda11.3安装正常

nvcc: NVIDIA (R) Cuda compiler driver<br>
Copyright (c) 2005-2021 NVIDIA Corporation<br>
Built on Sun_Mar_21_19:15:46_PDT_2021<br>
Cuda compilation tools, release 11.3, V11.3.58<br>
Build cuda_11.3.r11.3/compiler.29745058_0<br>

2.3 安装 cudnn8.2

  • 进入网站:https://developer.nvidia.com/rdp/cudnn-archive
  • 选择: Download cuDNN v8.2.0 (April 23rd, 2021), for CUDA 11.x
  • 选择: cuDNN Library for Linux (x86_64)
  • 你将会下载这个压缩包: "cudnn-11.3-linux-x64-v8.2.0.53.tgz"
# 解压
tar -zxvf cudnn-11.3-linux-x64-v8.2.0.53.tgz

将cudnn的头文件和lib拷贝到cuda11.3的安装目录下:

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

2.4 下载 tensorrt8.4.2.4

本教程中,tensorrt只需要下载\、解压即可,不需要安装。

  • 进入网站: https://developer.nvidia.cn/nvidia-tensorrt-8x-download
  • 把这个打勾: I Agree To the Terms of the NVIDIA TensorRT License Agreement
  • 选择: TensorRT 8.4 GA Update 1
  • 选择: TensorRT 8.4 GA Update 1 for Linux x86_64 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6 and 11.7 TAR Package
  • 你将会下载这个压缩包: "TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz"
# 解压
tar -zxvf TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
# 快速验证一下tensorrt+cuda+cudnn是否安装正常
cd TensorRT-8.4.2.4/samples/sampleMNIST
make
cd ../../bin/

导出tensorrt环境变量(it is important!),注:将LD_LIBRARY_PATH:后面的路径换成你自己的!后续编译onnx模型的时候也需要执行下面第一行命令

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/temp/TensorRT-8.4.2.4/lib
./sample_mnist

bash窗口打印类似如下图的手写数字识别表明cuda+cudnn+tensorrt安装正常

三、YOLOv8模型部署

3.1 下载仓库TensorRT-Alpha

git clone https://github.com/FeiYull/tensorrt-alpha

3.2 获取onnx文件

直接在网盘下载 weiyun or google driver 或者使用如下命令导出onnx:

#  yolov8 官方仓库: https://github.com/ultralytics/ultralytics
# yolov8 官方教程: https://docs.ultralytics.com/quickstart/
# TensorRT-Alpha will be updated synchronously as soon as possible! # 安装 yolov8
conda create -n yolov8 python==3.8 -y
conda activate yolov8
pip install ultralytics==8.0.5
pip install onnx # 下载官方权重(".pt" file)
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x6.pt

导出 onnx:

# 640
yolo mode=export model=yolov8n.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8s.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8m.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8l.pt format=onnx dynamic=True #simplify=True
yolo mode=export model=yolov8x.pt format=onnx dynamic=True #simplify=True
# 1280
yolo mode=export model=yolov8x6.pt format=onnx dynamic=True #simplify=True

3.3 编译 onnx

# 把你的onnx文件放到这个路径:tensorrt-alpha/data/yolov8
cd tensorrt-alpha/data/yolov8
# 请把LD_LIBRARY_PATH:换成您自己的路径。
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib
# 640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov8n.onnx --saveEngine=yolov8n.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov8s.onnx --saveEngine=yolov8s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov8m.onnx --saveEngine=yolov8m.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov8l.onnx --saveEngine=yolov8l.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov8x.onnx --saveEngine=yolov8x.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
# 1280
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolov8x6.onnx --saveEngine=yolov8x6.trt --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280

你将会的到例如:yolov8n.trt、yolov8s.trt、yolov8m.trt等文件。

3.4 编译运行

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/yolov8
mkdir build
cd build
cmake ..
make -j10
# 注: 效果图默认保存在路径 tensorrt-alpha/yolov8/build # 下面参数解释
# --show 表示可视化结果
# --savePath 表示保存,默认保存在build目录
# --savePath=../ 保存在上一级目录 ## 640
# 推理图片
./app_yolov8 --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=1 --img=../../data/6406407.jpg --show --savePath
./app_yolov8 --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show --savePath # 推理视频
./app_yolov8 --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=8 --video=../../data/people.mp4 --show --savePath=../ # 在线推理相机视频
./app_yolov8 --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=2 --cam_id=0 --show ## 1280
# infer camera
./app_yolov8 --model=../../data/yolov8/yolov8x6.trt --size=1280 --batch_size=2 --cam_id=0 --show

四、参考

https://github.com/FeiYull/TensorRT-Alpha

【实战】yolov8 tensorrt模型加速部署的更多相关文章

  1. 三分钟快速上手TensorFlow 2.0 (下)——模型的部署 、大规模训练、加速

    前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算 ...

  2. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

  3. 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署

    本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...

  4. StartDT AI Lab | 视觉智能引擎之算法模型加速

    通过StartDT AI Lab专栏之前多篇文章叙述,相信大家已经对计算机视觉技术及人工智能算法在奇点云AIOT战略中的支撑作用有了很好的理解.同样,这种业务牵引,技术覆盖的模式也收获了市场的良好反响 ...

  5. 二手车价格预测 | 构建AI模型并部署Web应用 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  6. HOWTO:制作 Windows 7 加速部署映像(作者:苏繁)

    加速部署映像 - 也就是我们通常说的系统模板,通常我们为了提高 Windows 的安装速度,会事先制作一套包含驱动.应用软件.补丁程序以及自定义设置的标准化系统.这样我们在使用该加速部署映像完成安装后 ...

  7. 百度大脑EasyEdge端模型生成部署攻略

    EasyEdge是百度基于Paddle Mobile研发的端计算模型生成平台,能够帮助深度学习开发者将自建模型快速部署到设备端.只需上传模型,最快2分种即可生成端计算模型并获取SDK.本文介绍Easy ...

  8. K8S(16)集成实战-使用spinnaker进行自动化部署

    K8s集成实战-使用spinnaker进行自动化部署 1 spinnaker概述和选型 1.1 概述 1.1.1 主要功能 Spinnaker是一个开源的多云持续交付平台,提供快速.可靠.稳定的软件变 ...

  9. 使用TENSORRT和NVIDIA-DOCKER部署深部神经网络

    使用TENSORRT和NVIDIA-DOCKER部署深部神经网络 当前部署工作流

  10. 模型加速[tensorflow&tensorrt]

    在tensorflow1.8之后的版本中,tensorflow.contrib部分都有tensorrt的组件,该组件存在的意义在于,你可以读取pb文件,并调用tensorrt的方法进行subgraph ...

随机推荐

  1. CSS选择器大全48式

    00.CSS选择器 CSS的选择器分类如下图,其中最最常用的就是基础选择器中的三种:元素选择器.类选择器.id选择器.伪类选择器就是元素的不同行为.状态,或逻辑.然后不同的选择器组合,基于不同的组合关 ...

  2. Java线程未捕获异常处理 UncaughtExceptionHandler

    当一个线程在执行过程中抛出了异常,并且没有进行try..catch,那么这个线程就会终止运行.在Thread类中,提供了两个可以设置线程未捕获异常的全局处理器,我们可以在处理器里做一些工作,例如将异常 ...

  3. CSS布局秘籍(1)-任督二脉BFC/IFC

    01.CSS布局 1.1.正常布局流(Normal flow) 正常布局流 就是不做任何布局控制,按照HTML的顺序(从左到右,从上而下)进行布局排列.网页基于盒子模型进行正常的布局,主要特点: 盒子 ...

  4. JAVA系列之类加载机制详解

    类的加载机制 ? 双亲委派机制 ? 什么是类加载器 ? 自定义类加载器有哪些应用场景 ? 通常,在关于Java的类加载部分会遇到以上疑问,本文将对类加载重要部分做详细介绍,包括重要的基础概念和应用场景 ...

  5. mindxdl---common--test_tools.go

    // Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.// Package common define co ...

  6. Python调用golang

    有些时候因为效率问题部分代码会 使用Python调用go的编译生成动态链接库go 代码示例//add.gopackage main import "C" //export Addf ...

  7. Cache的相关知识(二)

    1. cache背景知识 为什么的CPU内部需要cache单元?   主要的原因是CPU的速度和内存的速度之间严重不匹配,Cpu处理速度极快,而访问内存慢,cache在这个背景下就诞生了.设计人员通过 ...

  8. Python-WebSpider

    (一)网路爬虫入门 1.0 爬虫是个啥 通过编写程序,模拟浏览器去上网,然后让其去互联网上抓取数据的过程 1.1 爬虫分类 通用爬虫 :抓取系统重要组成部分,抓取一整张页面的数据 聚焦爬虫:建立在通用 ...

  9. 【Java SE进阶】Day13 Stream流、方法引用

    〇.总结 Stream流的方法:forEach.filter.map.count.limit.skip.concat(结合之前的Collectors接口) 方法引用:Lambda的其他类方法体相同,如 ...

  10. 【每日一题】【迭代器,泛型】2022年1月8日-NC93 设计LRU缓存结构

    描述设计LRU(最近最少使用)缓存结构,该结构在构造时确定大小,假设大小为 k ,并有如下两个功能1. set(key, value):将记录(key, value)插入该结构2. get(key): ...