a^b(位运算&快速幂)
题目:
题解:很简单、经典的的一道快速幂的题 注意一下用LL型就ok。
代码:
1 #include <map>
2 #include <set>
3 #include <list>
4 #include <stack>
5 #include <queue>
6 #include <deque>
7 #include <cmath>
8 #include <ctime>
9 #include <string>
10 #include <limits>
11 #include <cstdio>
12 #include <vector>
13 #include <iomanip>
14 #include <cstdlib>
15 #include <cstring>
16 #include <istream>
17 #include <iostream>
18 #include <algorithm>
19 #define ci cin
20 #define co cout
21 #define el endl
22 #define Scc(c) scanf("%c",&c)
23 #define Scs(s) scanf("%s",s)
24 #define Sci(x) scanf("%d",&x)
25 #define Sci2(x, y) scanf("%d%d",&x,&y)
26 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
27 #define Scl(x) scanf("%I64d",&x)
28 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
29 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
30 #define Pri(x) printf("%d\n",x)
31 #define Prl(x) printf("%I64d\n",x)
32 #define Prc(c) printf("%c\n",c)
33 #define Prs(s) printf("%s\n",s)
34 #define For(i,x,y) for(int i=x;i<y;i++)
35 #define For_(i,x,y) for(int i=x;i<=y;i++)
36 #define FFor(i,x,y) for(int i=x;i>y;i--)
37 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
38 #define Mem(f, x) memset(f,x,sizeof(f))
39 #define LL long long
40 #define ULL unsigned long long
41 #define MAXSIZE 100005
42 #define INF 0x3f3f3f3f
43
44 LL mod;
45 const double PI = acos(-1.0);
46
47 using namespace std;
48 void power(LL a,LL b)
49 {
50 LL ans=1%mod;
51 while(b)
52 {
53 if(b&1)
54 ans=a*1ll*ans%mod;
55 a=a*1ll*a%mod;
56 b>>=1;
57 }
58 cout << ans;
59 }
60 int main()
61 {
62 int a,b;
63 cin>>a>>b>>mod;
64 power(a,b);
65 return 0;
66 }
a^b(位运算&快速幂)的更多相关文章
- 洛谷——P1226 取余运算||快速幂
P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod ...
- 洛谷 P1226 取余运算||快速幂
P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod ...
- luogu P1226 取余运算||快速幂
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输 ...
- Luogu P1226 取余运算||快速幂_快速幂
超短代码 #include<iostream> #include<cstdio> using namespace std; long long b,p,k; long long ...
- luogu1226 取余运算||快速幂
题目大意:快速求$a^b\mod p$的值. 根据二进制,令$b=\sum t_k\cdot 2^k, t\in \{0,1\}$,那么$$a^b=a^{\sum t_k\cdot 2^k}\mod ...
- TZOJ 4839 麦森数(模拟快速幂)
描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有9 ...
- 51nod 1004 【快速幂】
思路: 掐住最后一位,快速幂一发就好了 #include<cstdio> #include <map> #include<iostream> #include< ...
- Rightmost Digit(快速幂+数学知识OR位运算) 分类: 数学 2015-07-03 14:56 4人阅读 评论(0) 收藏
C - Rightmost Digit Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- 欧几里得算法(及扩展)&&快速幂(二分+位运算)
最近在二中苦逼地上课,天天听数论(当然听不懂) 但是,简单的还是懂一点的 1.欧几里得算法 说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB? 证明可参照其他博客(不会),主要就是gcd(a ...
- 求幂&&快速幂&&位运算
1.普通的求幂方法: 时间复杂度为O(n),对于比较大的数在1s限时内可能会TLE int pow(int base,int p){ int ans=1; for(int i=1;i<=p;i+ ...
随机推荐
- 关于Qt的QPixmap中不支持jpg文件格式的问题
问题 Qt部分版本存在不支持jpg,JPEG等图像格式的问题 qDebug()<<QImageWriter::supportedImageFormats(); 这行代码可以查看所支持的图像 ...
- 【Hive】概念、安装、数据类型、DDL、DML操作、查询操作、函数、压缩存储、分区分桶、实战Top-N、调优(fetch抓取)、执行计划
一.概念 1.介绍 基于Hadoop的数据仓库工具,将结构化数据映射为一张表,可以通过类SQL方式查询 本质:将HQL转换成MapReduce程序 Hive中具有HQL对应的MapReduce模板 存 ...
- linux基础第二部分
一.Linux命令执行过程 先判断是否是别名,如果是直接执行,不是看是否是内部命令 如果是内部命令,直接执行,不是看hash表 hash表中有源文件直接执行,找不到报错 若hash表中不存在去外部规定 ...
- 【JVM】经典垃圾回收器
本文已收录至Github,推荐阅读 Java随想录 微信公众号:Java随想录 CSDN: 码农BookSea 转载请在文首注明出处,如发现恶意抄袭/搬运,会动用法律武器维护自己的权益.让我们一起维护 ...
- input限制只能输入汉字
<el-form class="det_foot" :model="form" :rules="rules" ref="fo ...
- python内存机制
内存机制 先从较浅的层面来说,Python的内存管理机制可以从三个方面来讲 (1)垃圾回收 (2)引用计数 (3)内存池机制 一.垃圾回收: python不像C++,Java等语言一样,他们可以不用事 ...
- DSS+Linkis Ansible 单机一键安装脚本
DSS+Linkis Ansible 单机一键安装脚本 一.简介 为解决繁琐的部署流程,简化安装步骤,本脚本提供一键安装最新版本的DSS+Linkis环境:部署包中的软件采用我自己编译的安装包,并且为 ...
- python之路51 聚合查询 分组查询
图书管理系统 1.表设计 先考虑普通字段再考虑外键字段 数据库迁移.测试数据录入 2.首页展示 3.书籍展示 4.书籍添加 5.书籍编辑 后端如何获取用户想要编辑的数据.前端如何展示出待编辑的数据 6 ...
- Ansible 学习笔记 - 定位主机和组的模式
中英文对照表 英文 中文 备注 host 主机 group (主机)组 pattern 模式 ad hoc 特别命令 playbook 剧本 Ansible 专有名词,一段复杂的编排 inventor ...
- Flutter框架渲染流程与使用
Flutter简述 Flutter是一个UI SDK, 可以进行移动端(iOS, Android),Web端, 桌面,它是一个跨平台解决方法. Flutter的特点:美观,快速,高效,开放. 美观:F ...