JZOJ 5843.B
\(Description\)
给定 \(n\) 个正整数序列 ,每个序列长度为 \(m\)。
选择至少 \(1\) 个序列,在每个被选择的序列中选择一个元素,求出所有被选择的元素的 \(\gcd\)。
求所有方案的结果之和,答案对 \(1e9+7\) 取模。两种方案不同,当且仅当存在至少一个元素,在一种方案中被选择,在另一种中没有。
\(Input\)
第一行,两个正整数 \(n,m\)。
接下来 \(n\) 行,每行 \(m\) 个正整数,第 \(i\) 行代表序列 。
\(Output\)
第一行,一个整数,代表答案对 \(1e9+7\) 取模的结果。
解析
一道比较难的莫比乌斯反演题,要用到其中的性质,且按套路行事技巧处很多
最后推出的是一个关于欧拉函数的式子,莫比乌斯不见了
好,现在进行套路推导
先设 \(f(x)\) 表示选择至少一个序列,在每个被选择的序列选择一个元素,它们的 \(\gcd = x\) 的方案数。
则易得
\]
然后套路 \(F(x)\) 表示同 \(f(x)\) 但涵盖了 \(x\) 的倍数,即
\]
然后我们发现,我们先枚举 \(x\) ,再枚举其倍数 \(d\),而后面 \([a_{i,j}=d]\) 肯定是 \(x\) 的倍数,所以我们可以简化式子
\]
而此时,为了日后式子的简便即实现,我们设
\(cnt_{i,x}=\sum_{j=1}^m[x|a_{i,j}]\) 表示第 \(i\) 个数列所有是 \(x\) 的倍数的数的个数
再为了枚举得到所有答案,我们设 \(lim\) 表示所有元素的最大值
然后一波推式子,反演
\sum_{i=1}^{lim}if(i)
&=\sum_{i=1}^{lim}i\sum_{i|d}F(d)\mu(\frac{d}{i}) \\
&=\sum_{i=1}^{lim}i\sum_{i|d}\prod_{j=1}^n((cnt_{j,d}+1)-1)\mu(\frac{d}{i}) \\
&=\sum_{d=1}^{lim}\sum_{i|d}i\mu(\frac{d}{i})(\prod_{j=1}^n(cnt_{j,d}+1)-1)
\end{aligned}
\]
然后,然后~~~好像没戏了
但,我们有伟大的欧拉!!
上
\varphi(n)
&=\sum_{i=1}^n[\gcd(i,n)=1] \\
&=\sum_{i=1}^n\sum_{d|gcd(i,j)}\mu(d) \\
&=\sum_{d|n}\mu(d)\frac{n}{d}
\end{aligned}
\]
哈哈哈,太棒了!
相同的一部分,代入式子
\sum_{d=1}^{lim}\sum_{i|d}i\mu(\frac{d}{i})(\prod_{j=1}^n(cnt_{j,d}+1)-1)
&=\sum_{d=1}^{lim}\varphi(n)(\prod_{j=1}^n(cnt_{j,d}+1)-1)
\end{aligned}
\]
于是这题就这样了。
线性筛 \(\varphi\),预处理 \(cnt\) 数组(根据套路,不要枚举因子而是枚举倍数)。
\(Code\)
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL;
const int N = 1e5;
const LL mod = 1e9 + 7;
int lim , n , m , a[25][N + 5] , cnt[25][N + 5] , phi[N + 5] , prime[N + 5] , vis[N + 5] , tot;
LL ans;
inline void getPhi()
{
phi[1] = 1;
for(register int i = 2; i <= N; i++)
{
if (!vis[i]) phi[prime[++tot] = i] = i - 1;
for(register int j = 1; j <= tot && prime[j] * i <= N; j++)
{
vis[prime[j] * i] = 1;
if (i % prime[j] == 0)
{
phi[prime[j] * i] = phi[i] * prime[j];
break;
}
phi[prime[j] * i] = phi[i] * (prime[j] - 1);
}
}
}
inline void getCnt()
{
for(register int i = 1; i <= n; i++)
for(register int j = 1; j <= lim; j++)
for(register int k = 2; k * j <= lim; k++)
cnt[i][j] += cnt[i][j * k];
}
int main()
{
freopen("b.in" , "r" , stdin);
freopen("b.out" , "w" , stdout);
scanf("%d%d" , &n , &m);
for(register int i = 1; i <= n; i++)
for(register int j = 1; j <= m; j++)
scanf("%d" , &a[i][j]) , cnt[i][a[i][j]]++ , lim = max(lim , a[i][j]);
getPhi() , getCnt();
for(register int d = 1; d <= lim; d++)
{
LL res = 1;
for(register int j = 1; j <= n; j++) res = res * (LL)(cnt[j][d] + 1) % mod;
ans = (ans + (LL)((LL)phi[d] * (res - 1)) % mod) % mod;
}
printf("%lld" , ans);
}
JZOJ 5843.B的更多相关文章
- (jzoj snow的追寻)线段树维护树的直径
jzoj snow的追寻 DFS序上搞 合并暴力和,记录最长链和当前最远点,距离跑LCA # include <stdio.h> # include <stdlib.h> # ...
- [jzoj]3506.【NOIP2013模拟11.4A组】善良的精灵(fairy)(深度优先生成树)
Link https://jzoj.net/senior/#main/show/3506 Description 从前有一个善良的精灵. 一天,一个年轻人B找到她并请他预言他的未来.这个精灵透过他的水 ...
- [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)
Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...
- [jzoj]5478.【NOIP2017提高组正式赛】列队
Link https://jzoj.net/senior/#main/show/5478 Description Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校 ...
- [jzoj]1115.【HNOI2008】GT考试
Link https://jzoj.net/senior/#main/show/1115 Description 申准备报名参加GT考试,准考证号为n位数X1X2X3...Xn-1Xn(0<=X ...
- [jzoj]2538.【NOIP2009TG】Hankson 的趣味题
Link https://jzoj.net/senior/#main/show/2538 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫H ...
- [jzoj]4216.【NOIP2015模拟9.12】平方和
Link https://jzoj.net/senior/#main/show/4216 Description 给出一个N个整数构成的序列,有M次操作,每次操作有一下三种: ①Insert Y X, ...
- [jzoj]2938.【NOIP2012模拟8.9】分割田地
Link https://jzoj.net/senior/#main/show/2938 Description 地主某君有一块由2×n个栅格组成的土地,有k个儿子,现在地主快要终老了,要把这些土地分 ...
- [jzoj]2505.【NOIP2011模拟7.29】藤原妹红
Link https://jzoj.net/senior/#main/show/2505 Description 在幻想乡,藤原妹红是拥有不老不死能力的人类.虽然不喜欢与人们交流,妹红仍然保护着误入迷 ...
- [jzoj]3875.【NOIP2014八校联考第4场第2试10.20】星球联盟(alliance)
Link https://jzoj.net/senior/#main/show/3875 Problem 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流. ...
随机推荐
- table 动态隐藏tr行
table: <table style="width:100%" class="table01" cellspacing="1" ce ...
- 在 win11 下搭建并使用 ubuntu 子系统(同时测试 win10)——(附带深度学习环境搭建)
对于一个深度学习从事者来说,Windows训练模型有着诸多不便,还好现在Windows的Ubuntu子系统逐渐完善,近期由于工作需求,配置了Windows的工作站,为了方便起见,搭建了Ubuntu子系 ...
- 【消息队列面试】11-14:kafka高可靠、高吞吐量、消息丢失、消费模式
十一.kafka消息高可靠的解决方案 1.高可靠=避免消息丢失 解决消息丢失的问题 2.如何解决 (1)保证消息发送是可靠的(发成功了/落到partition) a.ack参数 发送端,采用ack机制 ...
- Qt开发Active控件:如何使用ActiveQt Server开发大型软件的主框架(2)
Qt开发Active控件:如何使用ActiveQt Server开发大型软件的主框架 注:本文更多地是带着如何去思考答案,而不是纯粹的放一个答案上来,如果你需要直接看到完整的答案,请直接看实例和最后的 ...
- 体验 Gitea Actions
即将推出的 Gitea Actions 致力于打造一个 CI/CD 工具的标准协议,第三方 CI 系统可以基于actions 协议与 Gitea 平台集成,提供一站式管理方案.Gitea Action ...
- python 之列表(list)处理
列表(list) 创建一个列表,只要把逗号分隔的不同的数据项使用方括号括起来即可,一个列表中的数据类型可以各不相同,可以同时分别为整数.实数.字符串等基本类型,甚至是列表.元组.字典.集合以及其他自定 ...
- 使用java代码调用rabbitmq接口进行新增编辑mq用户、虚拟机vhost、动态创建交换机exchange、队列queue以及设置权限,绑定vhost与exchange等操作
使用java代码操作rabbitmq时,首先需要一个有创建用户等权限的管理员账号,需要在rabbitmq的后台管理页面手动创建这个账号,系统推荐的这几个tag可以让账号有rabbitmq后台管理页面的 ...
- [cocos2d-x]飞机大战 遇到的bug和总结(二)
第一点 声音文件最好不要使用mp3格式,因为我在同时使用背景音乐和playeffect()的时候,出现了bug,两者的音效不能同时出现(应该是格式问题),并且声音在windows上运行的时候加载非常慢 ...
- CF1779C Least Prefix Sum 题解
CF链接:Least Prefix Sum Luogu链接:Least Prefix Sum $ {\scr \color {CornflowerBlue}{\text{Solution}}} $ 先 ...
- uniapp如何打包wgt格式
打包 build 首次打包,需要配置AppId 登录dcloud开发者中心 点击直达 创建应用 将生成的AppId配置到项目manifest.json中 开始打包 打包成功