视觉十四讲:第七讲_ORB特征点
1.特征点
特征点是图像里一些特别的地方,如角点、边缘和区块。比较著名有SIFT、SURF、ORB等。SIFT充分考虑了图像变换过程中出现的光照、尺度、旋转等变换,但是计算量非常大。而ORB是质量和性能之间比较好的折中。
特征点包含:
- 关键点
- 描述子
2. ORB特性
提取ORB特性有两个步骤:FAST角点提取、BRIEF描述子
1.FAST关键点:
1.在图像中选取像素p,假设它的亮度为\({I}_{p}\).
2.设置一个阀值T,比如\({I}_{p}\)的20%
3.以像素点p为中心,选取半径为3的圆上的16个像素点
4.假如选取的圆上有连续N个点的亮度大于\({I}_{p}\)+T或小于\({I}_{p}\)-T,则p可认为是特征点(N取12的话,就是FAST-12)
5.循环上面的四步,对每一个像素执行相同的操作
ORB添加了尺度和旋转的描述.
- 尺度不变由构造图像金字塔,并在金字塔的每一层上检测焦点来实现.
- 旋转由计算特征点附近的图像灰度质心求得.步骤为:
1.在一个小的图像块B中,定义图像块的矩为:\({m}_{pq} = \sum_{x,y\in B}x^py^qI(x,y)\) p,q={0,1}
2.通过矩可以找到图像快的质心: \(C=(\frac{m_{10}}{m_{00}},\frac{m_{01}}{m_{00}})\)
3.连接图像块的几何中心O与质心C,得到一个向量\(\vec{OC}\)
4.特征点的方向可以定义为: \(\theta=arctan(m_{01}/m_{10})\)
2.BRIEF描述子:
BRIEF是一种二进制描述子,由0和1组成,这里0和1编码了关键点附近两个随机像素比如(p和q)的大小关系:如果p比q大,取1,反之取0.如果取了128个这样的p,q.则最后得到128维由0,1组成的向量.BRIEF使用了随机选点的比较,速度非常快.
3.特征匹配:
最简单的匹配模式是暴力匹配.对两个时刻的图像取得的特征点,测量描述子的距离,然后排序,取最近的一个作为匹配点.对于浮点型的描述子,使用欧氏距离进行度量,对于二进制,使用汉明距离进行度量-两个二进制串的汉明距离,指的是其不同位数的个数.
当特征点数量很大的时候,暴力匹配的计算量会很大,使用快速近似最近邻(FLANN)更适合匹配点数极多的情况.
4.ORB特征点
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <chrono>
using namespace std;
using namespace cv;
int main(int argc, char **argv) {
if (argc != 3) {
cout << "usage: feature_extraction img1 img2" << endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
assert(img_1.data != nullptr && img_2.data != nullptr);
//-- 初始化
std::vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
Mat outimg1;
drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
imshow("ORB features", outimg1);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> matches;
t1 = chrono::steady_clock::now();
matcher->match(descriptors_1, descriptors_2, matches);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
//-- 第四步:匹配点对筛选
// 计算最小距离和最大距离
auto min_max = minmax_element(matches.begin(), matches.end(),
[](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
double min_dist = min_max.first->distance;
double max_dist = min_max.second->distance;
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector<DMatch> good_matches;
for (int i = 0; i < descriptors_1.rows; i++) {
if (matches[i].distance <= max(2 * min_dist, 30.0)) {
good_matches.push_back(matches[i]);
}
}
//-- 第五步:绘制匹配结果
Mat img_match;
Mat img_goodmatch;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
imshow("all matches", img_match);
imshow("good matches", img_goodmatch);
waitKey(0);
return 0;
}
CMakeLists.txt:
cmake_minimum_required(VERSION 2.8)
project(orb)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
include_directories(inc)
aux_source_directory(src DIR_SRCS)
SET(SOUR_FILE ${DIR_SRCS})
find_package(OpenCV 3 REQUIRED)
find_package(G2O REQUIRED)
find_package(Sophus REQUIRED)
include_directories(
${OpenCV_INCLUDE_DIRS}
${G2O_INCLUDE_DIRS}
${Sophus_INCLUDE_DIRS}
"/usr/include/eigen3/"
)
add_executable(orb ${SOUR_FILE})
target_link_libraries(orb ${OpenCV_LIBS})
5.手写ORB特征点
//
// Created by xiang on 18-11-25.
//
#include <opencv2/opencv.hpp>
#include <string>
#include <nmmintrin.h>
#include <chrono>
using namespace std;
// global variables
string first_file = "./1.png";
string second_file = "./2.png";
// 32 bit unsigned int, will have 8, 8x32=256
typedef vector<uint32_t> DescType; // Descriptor type
/**
* compute descriptor of orb keypoints
* @param img input image
* @param keypoints detected fast keypoints
* @param descriptors descriptors
*
* NOTE: if a keypoint goes outside the image boundary (8 pixels), descriptors will not be computed and will be left as
* empty
*/
void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors);
/**
* brute-force match two sets of descriptors
* @param desc1 the first descriptor
* @param desc2 the second descriptor
* @param matches matches of two images
*/
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches);
int main(int argc, char **argv) {
// load image
cv::Mat first_image = cv::imread(first_file, 0);
cv::Mat second_image = cv::imread(second_file, 0);
assert(first_image.data != nullptr && second_image.data != nullptr);
// detect FAST keypoints1 using threshold=40
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
vector<cv::KeyPoint> keypoints1;
cv::FAST(first_image, keypoints1, 40);
vector<DescType> descriptor1;
ComputeORB(first_image, keypoints1, descriptor1);
// same for the second
vector<cv::KeyPoint> keypoints2;
vector<DescType> descriptor2;
cv::FAST(second_image, keypoints2, 40);
ComputeORB(second_image, keypoints2, descriptor2);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
// find matches
vector<cv::DMatch> matches;
t1 = chrono::steady_clock::now();
BfMatch(descriptor1, descriptor2, matches);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
cout << "matches: " << matches.size() << endl;
// plot the matches
cv::Mat image_show;
cv::drawMatches(first_image, keypoints1, second_image, keypoints2, matches, image_show);
cv::imshow("matches", image_show);
cv::imwrite("matches.png", image_show);
cv::waitKey(0);
cout << "done." << endl;
return 0;
}
// -------------------------------------------------------------------------------------------------- //
// ORB pattern
int ORB_pattern[256 * 4] = {
8, -3, 9, 5/*mean (0), correlation (0)*/,
4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
-11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
-2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
-13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
-13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
-13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
-11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
-4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
-13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
-9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
-3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
-6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
-8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
-2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
-13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
-7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
-4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
-10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
-4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
-8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
-13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
-3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
-6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
-13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
-6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
-13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
-13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
-1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
-13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
-13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
-13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
-7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
-9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
-2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
-12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
-7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
-3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
-11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
-1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
-4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
-9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
-12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
-7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
-4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
-7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
-13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
-3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
-13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
-4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
-1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
-1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
-13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
-8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
-11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
-11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
-10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
-5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
-10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
-10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
-2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
-5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
-9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
-5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
-9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
-2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
-12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
-9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
-1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
-13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
-5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
-4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
-7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
-13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
-2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
-2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
-6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
-3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
-13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
-7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
-8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
-13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
-6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
-11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
-12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
-11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
-2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
-1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
-13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
-10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
-3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
-9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
-4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
-4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
-6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
-13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
-1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
-4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
-7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
-13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
-7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
-8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
-5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
-13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
-1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
-9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
-1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
-13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
-10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
-10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
-4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
-9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
-12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
-10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
-8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
-7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
-3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
-1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
-3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
-8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
-3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
-10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
-13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
-13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
-13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
-9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
-13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
-1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
-1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
-13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
-10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
-1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};
// compute the descriptor
void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors) {
const int half_patch_size = 8;
const int half_boundary = 16;
int bad_points = 0;
for (auto &kp: keypoints) {
//不计算图像边的特征点
if (kp.pt.x < half_boundary || kp.pt.y < half_boundary ||
kp.pt.x >= img.cols - half_boundary || kp.pt.y >= img.rows - half_boundary) {
// outside
bad_points++;
descriptors.push_back({});
continue;
}
//计算旋转角度
float m01 = 0, m10 = 0;
for (int dx = -half_patch_size; dx < half_patch_size; ++dx) {
for (int dy = -half_patch_size; dy < half_patch_size; ++dy) {
uchar pixel = img.at<uchar>(kp.pt.y + dy, kp.pt.x + dx);
m01 += dx * pixel;
m10 += dy * pixel;
}
}
// angle should be arc tan(m01/m10);
float m_sqrt = sqrt(m01 * m01 + m10 * m10) + 1e-18; // avoid divide by zero
float sin_theta = m01 / m_sqrt;
float cos_theta = m10 / m_sqrt;
// 计算描述子,256维,8个uint32位
DescType desc(8, 0);
for (int i = 0; i < 8; i++) {
uint32_t d = 0;
for (int k = 0; k < 32; k++) {
int idx_pq = i * 8 + k;
cv::Point2f p(ORB_pattern[idx_pq * 4], ORB_pattern[idx_pq * 4 + 1]);
cv::Point2f q(ORB_pattern[idx_pq * 4 + 2], ORB_pattern[idx_pq * 4 + 3]); //随机选点算法
cv::Point2f pp = cv::Point2f(cos_theta * p.x - sin_theta * p.y, sin_theta * p.x + cos_theta * p.y) //选点坐标,包含旋转信息
+ kp.pt;
cv::Point2f qq = cv::Point2f(cos_theta * q.x - sin_theta * q.y, sin_theta * q.x + cos_theta * q.y)
+ kp.pt;
if (img.at<uchar>(pp.y, pp.x) < img.at<uchar>(qq.y, qq.x)) { //比较p和q的大小
d |= 1 << k;
}
}
desc[i] = d;
}
descriptors.push_back(desc);
}
cout << "bad/total: " << bad_points << "/" << keypoints.size() << endl;
}
// 匹配描述子
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
const int d_max = 40;
for (size_t i1 = 0; i1 < desc1.size(); ++i1) {
if (desc1[i1].empty()) continue;
cv::DMatch m{i1, 0, 256};
for (size_t i2 = 0; i2 < desc2.size(); ++i2) {
if (desc2[i2].empty()) continue;
int distance = 0;
for (int k = 0; k < 8; k++) {
distance += _mm_popcnt_u32(desc1[i1][k] ^ desc2[i2][k]);
}
if (distance < d_max && distance < m.distance) {
m.distance = distance;
m.trainIdx = i2;
}
}
if (m.distance < d_max) {
matches.push_back(m);
}
}
}
视觉十四讲:第七讲_ORB特征点的更多相关文章
- 视觉slam十四讲第七章课后习题6
版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何 ...
- 视觉slam十四讲第七章课后习题7
版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html 7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来 ...
- 视觉slam学习之路(一)看高翔十四讲所遇到的问题
目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么. ...
- 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM
下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...
- 高翔《视觉SLAM十四讲》从理论到实践
目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...
- 高博-《视觉SLAM十四讲》
0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...
- 《视觉SLAM十四讲》第2讲
目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...
- 《视觉SLAM十四讲》第1讲
目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...
- 视觉SLAM十四讲:从理论到实践 两版 PDF和源码
视觉SLAM十四讲:从理论到实践 第一版电子版PDF 链接:https://pan.baidu.com/s/1SuuSpavo_fj7xqTYtgHBfw提取码:lr4t 源码github链接:htt ...
- 《SLAM十四讲》个人学习知识点梳理
0.引言 从六月末到八月初大概一个月时间一直在啃SLAM十四讲[1]这本书,这本书把SLAM中涉及的基本知识点都涵盖了,所以在这里做一个复习,对这本书自己学到的东西做一个梳理. 书本地址:http:/ ...
随机推荐
- 注册IBMlinuxone并使用xshell登陆
登陆地址:https://linuxone.cloud.marist.edu/#/login 注册地址:https://linuxone.cloud.marist.edu/#/register?fla ...
- .NET周报【11月第3期 2022-11-22】
国内文章 .NET Conf China 2022 第一批讲师阵容大揭秘!整个期待了! https://mp.weixin.qq.com/s/4p89hhBPw6qv-0OB_T_TOg 目光看过来 ...
- vscode 更新后重启恢复旧版
vscode的自动更新自动安装在C:\Users\admin\AppData\Local\,如果之前的vscode不在默认位置,就会更新出两个版本,如果还用了固定在开始屏幕或者任务栏,则一直在打开旧版 ...
- Codeforces Round #836 (Div. 2) A-D
比赛链接 A 题意 给一个字符串 \(s\) ,对其加倍,即每个字符后面追加一个相同字符. 加倍后可以重排列,要求构造一个回文串. 题解 知识点:构造. 既然可以重排列了,那顺序是随意的了,直接翻转加 ...
- oracle 内置函数(三)日期函数
日期函数概要: 系统时间 日期操作 一.系统时间 sysdate:还是西方的格式,我们一般需要to_char(date,'yyyy-mm-dd hh24:mi:ss') next_day:当前日期的下 ...
- Django基础笔记5(Session)
Session cookie:保存在客户端浏览器上的键值对 session:保存在服务器端的数据 保持会话 def index(req): v = req.session.get('use ...
- 《Java口袋指南》-内容总结
Java口袋指南 一.语言 1.命名 类名:大驼峰 泛型:E标识集合元素 方法名:小驼峰 变量名:小写 包名:小写或下划线 2.词法元素/token 字符串压缩优化 ...
- [深度学习] Contractive Autoencoder
转载于DeepLearning: Contractive Autoencoder - dupuleng - 博客园 一.雅克比矩阵 雅克比矩阵是一阶偏导,假设(x1,x2,....,xn)到(y ...
- 发布个工具,一键恢复Win8/8.1中的微软拼音长句模式(新体验模式)
(cnBeta:http://www.cnbeta.com/articles/277936.htm) 首先贴个图,大家来一起念台词~ 念完了木有?很激情澎湃义愤填膺有木有? 这事情最早追溯到前年 8 ...
- [LeetCode]数组拆分 I
题目 代码 class Solution { public: int arrayPairSum(vector<int>& nums) { std::sort(nums.begin( ...