摘要:本文中,我们将介绍通过代码移动(插入)的方式消除冗余计算的一个典型方法。

本文分享自华为云社区《编译器优化那些事儿(3):Lazy Code Motion》,作者:毕昇小助手。

导语

本文中,我们将介绍通过代码移动(插入)的方式消除冗余计算的一个典型方法。

下图给出的简要程序流图中, ①是我们想要优化的代码,②和③是优化后的代码,让我们先思考下面几个问题:

  • ②和③哪个优化效果更好一点?

③ 更好一点,相比 ② 寄存器生存周期更短

  • ③这种情况,在 p 点直接插入 t=b+c 会带来安全或性能问题吗? 会改变程序的行为吗?

这里不会引入冗余的计算,也没有改变程序行为。但如果 p 是下文介绍的 非预期的 点,我们就需要使用在 临界边上增加合成块的方式避免这个问题了。

  • 能否由编译器来完成一个算法,找到一个通用的、寻找到合适的插入点的方法以消除冗余计算?

这是本文要介绍的内容,我们会在下面算法章节引入四个定义,为程序在各个点上打上标签,通过这些点的集合之间的运算,得到插入点的集合。

0.1 开始之前

介绍算法之前,我们来看三个在写应用层代码时可能会遇到的问题。

(1)我们可以把计算移动到不会重复计算的路径吗?

答案已在图中给出:

    • 左边例子是可以的。这也是下文算法要找的情景。当然实际应用程序中会更复杂,以致我们不能明显看出或不经意间引入冗余的计算,比如 《Lazy code motion》1 里给出的例子。
    • 中间不可以,因为 b 被重新定义了,所以 a = b + c 不是冗余计算了。
    • 右边不可以,因为 a = b + c 可能一次也没执行,移动到循环前可能会改变程序的行为。

(2)左图到右图的变化有优化效果吗

有的,这也是下面算法中要寻找的情景,左边的路径消除了一次冗余计算,右边为了保持程序正确性插入了一个计算,但并没有引入冗余的计算,所以总体是有优化的.

(3)下图中,能否在 block d 的父项 p 上插入表达式 t=b+c:

不能,因为插入不能改变程序的行为: 这里 t=b+c 可能难以看出问题,但如果表达式换成 b/c (c==0) 或 b^c 就能明显的看到造成了运行问题或性能问题。

解决方法:可在 临界边(Critical Edge)上增加 合成块(Synthetic Block)。

0.2 临界边(Critical Edge)的定义

定义:源基本块有多个后继,目标基本块有多个前驱,连接它们的边就叫临界边(Critical Edge)。

临界边如上图红色部分所示。

打破临界边(Critical Edge)的办法: 增加合成块(Synthetic Block)

步骤:

  1. 为每个指向拥有多个前置的基本块添加一个基本块(不仅仅是在 临界边 上)。
  2. 为了保持算法简单,将每个语句视为其自己的基本块,并将指令的放置限制在基本块的开头。

上图中我们插入了两个合成块,其中一个是多余的,但不用担心,我们可以在最后消除它。

1、算法

上文中,我们介绍了一个可以放心插入表达式而不会引入安全问题的方法,下面我们将正式介绍导语中提到的算法。

部分冗余消除算法要尽可能延迟计算, 这也是标题中 lazy 的含义。

程序流程图如下:

算法步骤:

  1. 首先计算预期表达式(Anticipated)集合
  2. 计算将可用的表达式(Will-be-Available)集合
  3. 从 AVAIL 和 ANT ,我们为每个表达式计算出最早的插入位置(Earliest)集合,这最大限度地消除了冗余,但可能会增大寄存器生存期
  4. 再计算延迟表达式(Postponable)集合
  5. 经过上面的计算,引入 Latest 的定义,计算最晚插入的点的集合,实现与 earliest 相同数量的冗余消除,但缩短了保存表达式值的寄存器的生存期
  6. 计算使用表达式(Used)
  7. 计算最后的插入位置的集合,替换冗余表达式

我们会以下图为例,说明整个计算过程。根据以往的经验,下面给出的几个公式,必须结合图例去理解,文字无法阐述清楚准确定义。

1.1 预期表达式(Anticipated)

Anticipated:An expression is said to be anticipated at program point if all paths leading from eventually computes (from the values of ’s operands that are available at ).

预期表达式(Anticipated)的分析方向为后向(backword)。

图示说明:

1 表示该点是可预期的(Anticipated),0 表示不是。 该算法的方向是 后向(backword)的,对应到图中,我们要从 p1 开始判断:对于表达式 b+c 而言,p1 是非预期的,因为到该点为止,没有 b+c 的计算,继续往上,看到了 b+c 的计算,所以 p2 点是可预期的(Anticipated),这情况一直持续到 p3,到 p4,由于该点看到了 b=1,b 被重新定义了,就是公式里被 Kill 的表达式,所以 p4 点不是可预期的(Anticipated)点。

1.2 将可用的表达式(Will-be-Available)

Will-be-available:An expression is said to be will-be-available at program point if it is anticipated and not subsequently killed along all paths reaching .

将可用的表达式(Will-be-Available)的分析方向为前向(forward)。

图中绿色的 1 表示表达式 b+c 该点是将可用的(Will-be-Available),0 表示不是。该算法方向是前向的,就是分析时,我们从 p4 开始看,根据公式的定义,该点不是可预期的(Anticipated),也没有计算表达式 b+c,所以该点不是将可用的(Will-be-Available),p3 虽然是可预期的(Anticipated),但因为 b=1 ,所以 p3 点对表达式 b+c 来说是 Ekillp ,所以该点仍不是将可用的,p5 点是可预期的(Anticipated),且该点没有 kill 的操作,该点是将可用的(Will-be-Available),后续的点类似。

接下来可以通过以下公式进行最早插入点的计算:

根据公式,最早可插入的点的集合是 可预期点的(Anticipated)集合(图中红色1部分) 减去 将可用点的(Will-be-Available)集合,得到图中标记的点。

目前为止我们已经找了一种通用的消除重复计算的方法,就是在上图中标注 Earliest 的点插入表达式 t=b+c, 然后在后面所有用到 b+c 的地方替换成 t,但这样做会带来一个问题,就是寄存器的生存期会很长。通过下一小节引入的定义,我们可以解决这个寄存器生存期的问题。

1.3 延缓表达式(Postponable)

An expression is said to be postponable at program point if all paths leading to have seen earliest placement of but not a subsequent use.

延缓表达式(Postponable)的分析方向为前向(forward)。

延迟创建冗余计算表达式可以减少寄存器压力:从公式看,Postponable点一定是在 Earliest 点的后面的,更接近表达式要被替换的地方,就是说,从表达式第一次被计算的点(结果在寄存器)到该结果被复用的点距离更近。

对于该图的讲解,可以参考 YouTube2 中的讲解。

接下来可以通过以下公式进行最晚插入点(Latest)的计算:

  1. 先在 Earliest 与 postpobable 集合的并集位置放置表达式 e 。
  2. 对上一步的点进行筛选,需要满足:表达式 e 在 b 点(随后的基本块)被Use 或 它不是上一步点的后继。

这里插入的点(图中黄色方块)是增加的合成块,是出于安全性的考虑。

1.4 已用表达式(Used Expressions)

An expression is said to be used at program point if there exists a path leading from that uses the expression before the operands are reevaluated.

已用表达式(Used Expressions)的分析方向为后向(backword)。

如图所示,从下往上看,未使用的点标记为0,直到使用的地方被标记为1。

引入这个定义主要是为了消除当前块之外未使用的临时变量赋值,计算方式: Used.out: sets of used (live) expressions at exit of b.

2、最终的解决方案

对所有的基本块/表达式 b,如果表达式属于最晚插入点的集合与已用点位置的交集,

则在基本块b的开头,先创建 t = a + b,然后把所有的 x+y 替换为 t。

目前为止算法的介绍部分就已经全部讲完了,但是有些定义还是比较模糊,需要结合代码才能讲清楚, 大家可以翻看LLVM 源码3中关于该代码的具体实现: MachineCSE 类与 NaryReassociatePass 等类的实现。

参考

1.https://dl.acm.org/doi/abs/10.1145/143095.143136

2.https://www.youtube.com/watch?v=3s4oST3oZzQ&t=20s

3.https://github.com/llvm/llvm-project

点击关注,第一时间了解华为云新鲜技术~

毕昇编译器优化:Lazy Code Motion的更多相关文章

  1. 优化:代码移动code motion

    代码移动code motion-一种常见的优化-这种优化是把(一种需要执行多次但计算结果不会改变)的计算移到前面-这种优化一般需要程序员自行移动代码,不能依靠编译器(编译器担心会有副作用) 看看代码就 ...

  2. [Inside HotSpot] C1编译器优化:全局值编号(GVN)

    1. 值编号 我们知道C1内部使用的是一种图结构的HIR,它由基本块构成一个图,然后每个基本块里面是SSA形式的指令,关于这点如可以参考[Inside HotSpot] C1编译器工作流程及中间表示. ...

  3. 编译器优化:何为SLP矢量化

    摘要:SLP矢量化的目标是将相似的独立指令组合成向量指令,内存访问.算术运算.比较运算.PHI节点都可以使用这种技术进行矢量化. 本文分享自华为云社区<编译器优化那些事儿(1):SLP矢量化介绍 ...

  4. 探索c#之尾递归编译器优化

    阅读目录: 递归运用 尾递归优化 编译器优化 递归运用 一个函数直接或间接的调用自身,这个函数即可叫做递归函数. 递归主要功能是把问题转换成较小规模的子问题,以子问题的解去逐渐逼近最终结果. 递归最重 ...

  5. VS编译器优化诱发一个的Bug

    VS编译器优化诱发一个的Bug Bug的背景 我正在把某个C++下的驱动程序移植到C下,前几天发生了一个比较诡异的问题. 驱动程序有一个bug,但是这个bug只能 Win32 Release 版本下的 ...

  6. 翻译「C++ Rvalue References Explained」C++右值引用详解 Part6:Move语义和编译器优化

    本文为第六部分,目录请参阅概述部分:http://www.cnblogs.com/harrywong/p/cpp-rvalue-references-explained-introduction.ht ...

  7. Visual C++中的编译器优化

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:Visual C++中的编译器优化.

  8. gcc编译器优化给我们带来的麻烦???

    gcc编译器优化给我们带来的麻烦??? 今天看到一个很有趣的程序,如下: ? 1 2 3 4 5 6 7 8 9 int main() {     const int a = 1;     int * ...

  9. C#编译器优化那点事

    使用C#编写程序,给最终用户的程序,是需要使用release配置的,而release配置和debug配置,有一个关键区别,就是release的编译器优化默认是启用的. 优化代码开关即optimize开 ...

随机推荐

  1. Hapoop安装学习(第一天)

    学习任务: 1.安装虚拟机 Linux使用版本为Centos7,共安装3台虚拟机,一台主机和两台从机.主机命名为master,两台从机分别命名为s1和s2. master分配磁盘空间30G,s1和s2 ...

  2. 浏览器上写代码,4核8G微软服务器免费用,Codespaces真香

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 一图胜千言 先上图,下面是欣宸在自己的iPad Pro ...

  3. [python][flask] Flask 图片上传与下载例子(支持漂亮的拖拽上传)

    目录 1.效果预览 2.新增逻辑概览 3.tuchuang.py 逻辑介绍 3.1 图片上传 3.2 图片合法检查 3.3 图片下载 4.__init__.py 逻辑介绍 5.upload.html ...

  4. Linux Cgroup v1(中文翻译)(3):CPU Accounting Controller

    英文原文: https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cpuacct.html CPU Accounting Contr ...

  5. 代码调用Rally的接口介绍

    1. 支持的语言 2. 创建APIKey 3. GetRequest 4. QueryRequest 5. CreateRequest 6. 参考资料 本文链接: https://www.cnblog ...

  6. Python Excel 操作

    1.Excel Code import os import time import re import win32com.client def dealpath(pathname='') -> ...

  7. UiPath选择器之页面选择器的介绍和使用

    一.页面选择器的介绍 某些软件程序的布局和属性节点具有易变的值,例如某些Web应用程序.UiPath Studio无法预测这些变化,因此,您可能必须手动生成一些选择器. 每个属性都有一个分配的值.选择 ...

  8. ssh-配置及使用

    ssh配置文件 SSH的配置文件在/etc/ssh/目录下     openssh-client安装后,生成的配置文件为ssh_config,主要用于连接其他linux主机时,加载此文件     op ...

  9. 嵌入式中 动态阿拉伯语字符串 转换 LCD显示字符串【感谢建国雄心】

    本文参考CSDBN:建国雄心 的博客,这里找不到该帖子,放一个类似的仅供参考https://blog.csdn.net/qiaojiongzeng6321/article/details/748572 ...

  10. nginx 出现An error occurred错误

    原因是我nginx中conf文件的配置里面 location中的 这一块内容是 #注释的那两行 所以报错出现这个错误. 后来将这两行注释掉,改成这两个就好了. root html; index ind ...