SP6779 GSS7 - Can you answer these queries VII(线段树,树链剖分)
水题,只是坑点多,\(tag\)为\(0\)时可能也要\(pushdown\),所以要\(bool\)标记是否需要。最后树链剖分询问时注意线段有向!!!
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <numeric>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define MP make_pair
#ifdef QWQ
#define D_e_Line printf("\n------\n")
#define D_e(x) cerr << (#x) << " " << x << endl
#define C_e(x) cout << (#x) << " " << x << endl
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define Pause() system("pause")
#include <cassert>
#define PASS fprintf(stderr, "Passing [%s] in LINE %d\n",__FUNCTION__,__LINE__)
#else
#define D_e_Line
#define D_e(x)
#define C_e(x)
#define FileOpen()
#define FileSave()
#define Pause()
#define PASS
#endif
using namespace std;
struct FastIO {
template<typename ATP> inline FastIO& operator >> (ATP &x) {
x = 0; int sign = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') sign = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
if(sign == -1) x = -x;
return *this;
}
} io;
template<typename ATP> inline ATP Max(ATP x, ATP y) {
return x > y ? x : y;
}
template<typename ATP> inline ATP Min(ATP x, ATP y) {
return x < y ? x : y;
}
template<typename ATP> inline ATP Abs(ATP x) {
return x < 0 ? -x : x;
}
#include <vector>
const int N = 2e5 + 7;
struct Edge {
int nxt, pre;
} e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
}
int fa[N], son[N], siz[N], dep[N], dfn[N], dfnIdx, top[N], rnk[N], val[N], n;
void DFS_First(int u, int father) {
dep[u] = dep[father] + 1, fa[u] = father, siz[u] = 1;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
DFS_First(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
void DFS_Second(int u, int Tp) {
top[u] = Tp, dfn[u] = ++dfnIdx, rnk[dfnIdx] = u;
if(!son[u]) return;
DFS_Second(son[u], Tp);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != fa[u] && v != son[u]) DFS_Second(v, v);
}
}
struct Seg {
int sum, val, pre, suf, tag;
bool flag;
Seg() {sum = val = pre = suf = tag = flag = 0;}
Seg operator + (const Seg &b) const {
Seg c;
c.sum = sum + b.sum;
c.val = Max(Max(val, b.val), suf + b.pre);
c.pre = Max(pre, sum + b.pre);
c.suf = Max(b.suf, b.sum + suf);
return c;
}
} t[N << 2];
#define ls rt << 1
#define rs rt << 1 | 1
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
inline void Pushup(int &rt) {
t[rt] = t[ls] + t[rs];
}
inline void Pushdown(int &rt, int l, int mid, int r) {
t[ls].sum = (mid - l + 1) * t[rt].tag;
t[rs].sum = (r - mid) * t[rt].tag;
t[ls].pre = t[ls].val = t[ls].suf = Max(t[ls].sum, 0);
t[rs].pre = t[rs].val = t[rs].suf = Max(t[rs].sum, 0);
t[ls].flag = t[rs].flag = true;
t[ls].tag = t[rs].tag = t[rt].tag;
t[rt].tag = 0;
t[rt].flag = false;
}
void Build(int rt, int l, int r) {
if(l == r){
t[rt].sum = val[rnk[l]];
t[rt].val = t[rt].pre = t[rt].suf = Max(t[rt].sum, 0);
return;
}
int mid = (l + r) >> 1;
Build(lson), Build(rson);
Pushup(rt);
}
void Updata(int rt, int l, int r, int L, int R, int w) {
if(L <= l && r <= R){
t[rt].sum = (r - l + 1) * w;
t[rt].pre = t[rt].suf = t[rt].val = Max(t[rt].sum, 0);
t[rt].tag = w;
t[rt].flag = true;
return;
}
int mid = (l + r) >> 1;
if(t[rt].flag) Pushdown(rt, l, mid, r);
if(L <= mid) Updata(lson, L, R, w);
if(R > mid) Updata(rson, L, R, w);
Pushup(rt);
}
Seg Query(int rt, int l, int r, int L, int R) {
if(L <= l && r <= R) return t[rt];
int mid = (l + r) >> 1;
if(t[rt].flag) Pushdown(rt, l, mid, r);
Seg s;
if(L <= mid) s = Query(lson, L, R);
if(R > mid) s = s + Query(rson, L, R);
return s;
}
inline void Updata(int x, int y, int w) {
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) Swap(x, y);
Updata(1, 1, n, dfn[top[x]], dfn[x], w);
x = fa[top[x]];
}
if(dep[x] < dep[y]) Swap(x, y);
Updata(1, 1, n, dfn[y], dfn[x], w);
}
//inline int Query(int x, int y) {
// Seg s;
// while(top[x] != top[y]){
// if(dep[top[x]] < dep[top[y]]) Swap(x, y);
// s = s + Query(1, 1, n, dfn[top[x]], dfn[x]);
// x = fa[top[x]];
// }
// if(dep[x] < dep[y]) Swap(x, y);
// Swap(s.suf, s.pre);
// return (s + Query(1, 1, n, dfn[y], dfn[x])).val;
//}
inline int Query(int x, int y) {
Seg L, R;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]){
R = Query(1, 1, n, dfn[top[y]], dfn[y]) + R;
y = fa[top[y]];
}
else{
L = Query(1, 1, n, dfn[top[x]], dfn[x]) + L;
x = fa[top[x]];
}
}
if(dep[x] > dep[y]){
L = Query(1, 1, n, dfn[y], dfn[x]) + L;
}
else{
R = Query(1, 1, n, dfn[x], dfn[y]) + R;
}
Swap(L.pre, L.suf);
return (L + R).val;
}
int main() {
//FileOpen();
//FileSave();
io >> n;
R(i,1,n) io >> val[i];
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
}
DFS_First(1, 0);
DFS_Second(1, 1);
Build(1, 1, n);
int m;
io >> m;
while(m--){
int opt, l, r, w;
io >> opt >> l >> r;
if(opt == 1){
printf("%d\n", Query(l, r));
}
else{
io >> w;
Updata(l, r, w);
}
}
return 0;
}
/*
13
9 4 12 18 19 1 11 18 16 5 1 10 9 2 1
3 1
4 1
5 1
6 4
7 3
8 3
9 3
10 8
11 9
12 10
13 10
5
2 1 10 10
2 7 13 6
1 5 9
1 4 10
1 9 10
*/
SP6779 GSS7 - Can you answer these queries VII(线段树,树链剖分)的更多相关文章
- SP6779 GSS7 - Can you answer these queries VII
纯数据结构题,没有思维难度.直接用线段树求最大子段和的方法完成树上路径的合并.注意链上合并顺序要符合序列的前后顺序. #include <cstdio> #include <cstr ...
- 题解 SP6779 【GSS7 - Can you answer these queries VII】
题目传送门 题目大意 给出一个\(n\)个点的树,每个点有权值.有\(m\)次操作,每次要么查询一条链上的最大子段和,要么把一条链的权值都修改为一个常数. \(n,m\le 10^5\) 思路 如果是 ...
- SPOJ GSS7 - Can you answer these queries VII
板的不能再板,链剖+线段树或者是LCT随便维护. 感觉唯一要注意的是跳链的时候要对$x$向上跳和$y$向上跳的情况分开讨论,而不能直接$swap$,因为只有两段接触的端点才能相互合并,而且每一次向上跳 ...
- SPOJ GSS7 Can you answer these queries VII ——树链剖分 线段树
[题目分析] 问题放到了树上,直接链剖+线段树搞一搞. 调了300行+. (还是码力不够) [代码] #include <cstdio> #include <cstring> ...
- GSS7 spoj 6779. Can you answer these queries VII 树链剖分+线段树
GSS7Can you answer these queries VII 给出一棵树,树的节点有权值,有两种操作: 1.询问节点x,y的路径上最大子段和,可以为空 2.把节点x,y的路径上所有节点的权 ...
- GSS4 2713. Can you answer these queries IV 线段树
GSS7 Can you answer these queries IV 题目:给出一个数列,原数列和值不超过1e18,有两种操作: 0 x y:修改区间[x,y]所有数开方后向下调整至最近的整数 1 ...
- SPOJ GSS1_Can you answer these queries I(线段树区间合并)
SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...
- 6779. Can you answer these queries VII - SPOJ
Given a tree with N ( N<=100000 ) nodes. Each node has a interger value x_i ( |x_i|<=10000 ). ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
随机推荐
- UniqueMergeTree:支持实时更新删除的 ClickHouse 表引擎
UniqueMergeTree 开发的业务背景 首先,我们看一下哪些场景需要用到实时更新. 我们总结了三类场景: 第一类是业务需要对它的交易类数据进行实时分析,需要把数据流同步到 ClickHouse ...
- 记一次前端CryptoJS AES解密
1.背景 业务需求,需要联动多个平台,涉及到各平台的模拟登录. 已知加密前明文且正常登录.(无验证码要求) 某平台验证验证方式为.\login接口POST一串json字符串 { "accou ...
- SpringBoot Restful 接口实现
目录 SpringBoot 核心注解 SpringBoot Restful 接口实现 封装响应数据 SpringBoot 核心注解 SpringBoot 基础入门 注解 说明 Component 声明 ...
- React简单教程-2-ts和组件参数
前言 在上一章:React 简单教程-1-组件 我们知道了 React 的组件是什么,长什么样,用 js 和 HTML 小小体验了一下组件.在这一章,我们将使用 typescript(简称 ts) 来 ...
- Camunda如何适配国产数据库达梦
前言 camunda流程引擎官方支持的数据库有:MySQL .MariaDB .Oracle .DB2 .PostgreSQL .SQL Server.H2.对于其他类型的数据库如何支持,尤其是国产数 ...
- C# 使用SpecFlow创建BDD测试用例
将自然语言编写的测试用例转换为可执行的测试,可以大大降低需求与开发之间的沟通成本,这是BDD(行为驱动开发)希望达到的效果.SpecFlow是.Net平台的BDD工具,可以帮助我们创建面向BDD的测试 ...
- redis持久化之RDB (七)
一:什么是redis的持久化 Redis 持久化 Redis 提供了不同级别的持久化方式: RDB持久化方式能够在指定的时间间隔能对你的数据进行快照存储. AOF持久化方式记录每次对服务器写的操作,当 ...
- iOS全埋点解决方案-APP和H5打通
前言 所谓的 APP 和 H5 打通,是指 H5 集成 JavaScript 数据采集 SDK 后,H5 触发的事件不直接同步给服务器,而是先发给 APP 端的数据采集 SDK,经过 APP 端数 ...
- 【万字长文】从零配置一个vue组件库
简介 本文会从零开始配置一个monorepo类型的组件库,包括规范化配置.打包配置.组件库文档配置及开发一些提升效率的脚本等,monorepo 不熟悉的话这里一句话介绍一下,就是在一个git仓库里包含 ...
- freeswitch拨打分机号
概述 电话语音服务中,有一种稍微复杂的场景,就是总机分机的落地场景,客户拨打总机号码之后,需要再拨打分机号转接到指定的话机. 分机号的拨打一般在总机接通之后,会有语音提示,总机收号之后转接分机. 分机 ...