掉大分

E

对于一个序列,把它排回去的最小次数是 $\sum置换环大小-1=错位个数-置换环个数$

注意到m小于等于n/3。那么最多修正2m个错位。正确位置的个数必须大于等于n/3才可能在m次内修正。

每个点正确位置只有一个。那么整个序列最多有3个位置,以它们为开头满足条件。找出这些位置再暴力验证即可

 1 #include <queue>
2 #include <bitset>
3 #include <vector>
4 #include <cstdio>
5 #include <cstring>
6 #include <algorithm>
7 #define ll long long
8 using namespace std;
9 const int maxn=3e5, N1=maxn+5;
10
11 template <typename _T> void read(_T &ret)
12 {
13 ret=0; _T fh=1; char c=getchar();
14 while(c<'0'||c>'9'){ if(c=='-') fh=-1; c=getchar(); }
15 while(c>='0'&&c<='9'){ ret=ret*10+c-'0'; c=getchar(); }
16 ret=ret*fh;
17 }
18
19 int T,m,n;
20 int p[N1],cnt[N1];
21 int a[N1],vis[N1];
22
23 int check(int to)
24 {
25 for(int i=1+to;i<=n;i++) a[i-to]=p[i];
26 for(int i=1;i<=to;i++) a[i+n-to]=p[i];
27 for(int i=1;i<=n;i++) vis[i]=0;
28 int tot=0;
29 for(int i=1,num,x;i<=n;i++)
30 {
31 num=0;
32 if(vis[i]) continue;
33 for(x=i;;x=a[x])
34 {
35 vis[x]=1; num++;
36 if(a[x]==i) break;
37 }
38 tot+=num-1;
39 }
40 return tot<=m;
41 }
42
43 int main()
44 {
45 // freopen("a.in","r",stdin);
46 read(T);
47 while(T--)
48 {
49 read(n); read(m);
50 for(int i=1,x;i<=n;i++)
51 {
52 read(p[i]);
53 x=i-p[i]; if(x<0) x+=n;
54 cnt[x]++;
55 }
56 int ans=0, pos[3]={0,0,0}, fl;
57 for(int i=0;i<n;i++) if(cnt[i]>=n/3)
58 {
59 fl=check(i);
60 if(fl) pos[ans++]=i;
61 }
62 printf("%d ",ans);
63 for(int i=0;i<ans;i++) printf("%d ",pos[i]);
64 puts("");
65 for(int i=1;i<=n;i++) cnt[i]=0;
66 }
67 return 0;
68 }

F

此题应用了一个经典的换掉mod的方法:
$$
a\ mod\ b=a-\lfloor \frac{a}{b} \rfloor b
$$
我们把式子拆分一下,让问题变得有序
$$
p[k]=f[k]+g[k]\\
$$

$$
f[k]=\sum_{i,j\le k,j<i}a[i]\ mod\ a[j] \\
=f[k-1]+\sum_{i=1}^{k-1}a[k]\ mod\ a[i] \\
=f[k-1]+\sum_{i=1}^{k-1}a[k]-\lfloor \frac{a[k]}{a[i]} \rfloor a[i] \\
=f[k-1]+(k-1)a[k]-\sum_{i=1}^{k-1}\lfloor \frac{a[k]}{a[i]} \rfloor a[i]
$$

最后一项与前面的a[i]有关,我们从左往右处理,相当于每次向序列末尾推进一个a[k],接着计算它的贡献。a[i]会对a[k]在每隔ai的一段连续区间产生相同的贡献。对$[0,a[i])$产生0点,对$[a[i],2a[i])$产生a[i]点贡献。。。

我们需要区间修改,单点查询,上线段树

注意题目中的关键条件$a[i]\ne a[j]$,满足调和级数,那么即使我们暴力修改,也最多修改$O(mlogm)$个连续区间

接着处理剩下的一部分贡献
$$
g[k]=\sum_{i,j\le k,j<i}a[j]\ mod\ a[i] \\
=g[k-1]+\sum_{i=1}^{k-1}a[i]\ mod\ a[k] \\
=g[k-1]+\sum_{i=1}^{k-1}a[i]-\lfloor \frac{a[i]}{a[k]} \rfloor a[k] \\
=g[k-1]+\sum_{i=1}^{k-1}a[i]-\sum_{i=1}^{k-1}\lfloor \frac{a[i]}{a[k]} \rfloor a[k]
$$
还能用和上面相同的方法处理吗?答案是否定的,我们要对后面的式子**整除分块**计算贡献,而每次整除分块的复杂度是$O(\sqrt{m})$,修改的区间个数是$O(m\sqrt{m})$,应该会被卡

考虑讨论$\lfloor \frac{a[i]}{a[k]} \rfloor$的取值,在$[0,a[k])$之间是0,在$[a[k],2a[k])$之间是1。。。

对每个区间查询$a[i]$的和以及$a[i]$的出现次数!区间个数满足调和级数,也是$O(mlogm)$的

单点修改,区间查询,上线段树

总复杂度$O(mlogmlogn)$

CF1553X Harbour.Space Scholarship Contest 2021-2022 (Div. 1 + Div. 2)的更多相关文章

  1. Harbour.Space Scholarship Contest 2021-2022 (Div. 1 + Div. 2) Editorial题解

    A 略,发现只有当末尾为9时才满足条件.. B 简单模拟,注意数组大小!!! C 简单模拟. D 比较暴力的一个做法就是每次找一个开始匹配的起始点,然后每次不同时向后跳2就行了. 注意这里最后还要判断 ...

  2. Harbour.Space Scholarship Contest 2021-2022 题解

    多好的上分机会啊,要是换个时间(指改在 NOI 之后)我说不定就能上 2500 了(做白日梦 ing) A 签到题不多说,显然只有末尾为 \(9\) 的数是 interesting 的,因此答案就是 ...

  3. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...

  4. Codeforces Round #792 (Div. 1 + Div. 2) A-E

    Codeforces Round #792 (Div. 1 + Div. 2) A-E A 题目 https://codeforces.com/contest/1684/problem/A 题解 思路 ...

  5. CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)

    1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort    暴力枚举,水 1.题意:n*m的数组, ...

  6. xHTML+div布局:三个div,两边div宽度固定,中间div宽度自适应

    xHTML+div经常考题:三个div,两边div宽度固定,中间div宽度自适应. 和大家分享一个实现方式: 1.html代码 <div class="dyleft"> ...

  7. getElementsByTagName("div")和$("div")区别

    作者:zccst <body> <div class="selected">1</div> <div class="select ...

  8. 【codeforces】【比赛题解】#868 CF Round #438 (Div.1+Div.2)

    这次是Div.1+Div.2,所以有7题. 因为时间较早,而且正好赶上训练,所以机房开黑做. 然而我们都只做了3题.:(. 链接. [A]声控解锁 题意: Arkady的宠物狗Mu-mu有一只手机.它 ...

  9. Codeforces 1023 A.Single Wildcard Pattern Matching-匹配字符 (Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Fi)

    Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) A. Single Wildcard Patter ...

随机推荐

  1. Java中类变量(静态变量)和类方法(静态方法)

    类变量 类变量也叫静态变量或静态属性,是该类所有对象共享的变量任何一个该类的对象去访问它时,取得都是一样的值 语法: 访问修饰符  static  数据类型  变量名 static  访问修饰符  数 ...

  2. .NET官方封装的Win32API类库

    大部分朋友在使用C#.NET调用Win32API时都不清楚API函数的声明,要么就是抄网上的代码,但是总会遇到各种各样奇奇怪怪难以解决的问题,打算自己封装又发现工作量实在太大. 其实完全没有必要自己动 ...

  3. VS2019配置eigen

    本文讲述如何在VS2019中配置eigen eigen版本:eigen-3.3.9 百度网盘地址:https://pan.baidu.com/s/1Bu5A58qV2n8doDs4NpPfJQ  提取 ...

  4. 解决Springboot中的日期解析错误

    错误信息: error: Failed to parse Date value '2022-01-12 15:00:00': Cannot parse date "2022-01-12 15 ...

  5. 强大的数据包处理程序scapy

    实验目的 利用scapy工具构造arp.icmp数据包,发送到目标主机,根据应答包推测出目标系统存活情况 实验原理 Scapy是Python写的一个功能强大的交互式数据包处理程序,可用来发送.嗅探.解 ...

  6. [杂记]BrainFuck语言及编译器(c++实现)

    BrainFuck语言 极简的一种图灵完备的语言,由Urban Müller在1993年创造,由八个指令组成(如下表).工作机制与图灵机非常相似,有一条足够长的纸带,初始时纸带上的每一格都是0,有一个 ...

  7. /etc/fstab文件的详解

    转至:https://blog.csdn.net/youmatterhsp/article/details/83933158 一./etc/fstab文件的作用 磁盘被手动挂载之后都必须把挂载信息写入 ...

  8. 任意文件夹打开CMD命令窗口

    1:打开任意文件夹 2:按住Shift键,鼠标右键单击 3:该文件夹下的命令窗口已打开,方便快捷

  9. MIPI CSI-2 像素打包格式解析

    背景 MIPI CSI-2支持YUV.RGB和RAW data三种数据格式,这里是个笼统的叫法,具体又根据不同的像素打包方式细分为具体的格式,打包是什么概念?就是把Sensor采样得到的RGB三个通道 ...

  10. Spring入门一:IOC、DI、AOP基本思想

    Spring框架是一个集众多涉及模式于一身的开源的.轻量级的项目管理框架,致力于javaee轻量级解决方案.相对于原来学过的框架而言,spring框架和之前学习的struts2.mybatis框架有了 ...