什么是Scrapy

  • 基于Twisted的异步处理框架
  • 纯python实现的爬虫框架
  • 基本结构:5+2框架,5个组件,2个中间件

5个组件:

  • Scrapy Engine:引擎,负责其他部件通信 进行信号和数据传递;负责Scheduler、Downloader、Spiders、Item Pipeline中间的通讯信号和数据的传递,此组件相当于爬虫的“大脑”,是整个爬虫的调度中心
  • Scheduler:调度器,将request请求排列入队,当引擎需要交还给引擎,通过引擎将请求传递给Downloader;简单地说就是一个队列,负责接收引擎发送过来的 request请求,然后将请求排队,当引擎需要请求数据的时候,就将请求队列中的数据交给引擎。初始的爬取URL和后续在页面中获取的待爬取的URL将放入调度器中,等待爬取,同时调度器会自动去除重复的URL(如果特定的URL不需要去重也可以通过设置实现,如post请求的URL)
  • Downloader:下载器,将引擎engine发送的request进行接收,并将response结果交还给引擎engine,再由引擎传递给Spiders处理
  • Spiders:解析器,它负责处理所有responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器);同时也是入口URL的地方
  • Item Pipeline:数据管道,就是我们封装去重类、存储类的地方,负责处理 Spiders中获取到的数据并且进行后期的处理,过滤或者存储等等。当页面被爬虫解析所需的数据存入Item后,将被发送到项目管道(Pipeline),并经过几个特定的次序处理数据,最后存入本地文件或存入数据库

2个中间件:

  • Downloader Middlewares:下载中间件,可以当做是一个可自定义扩展下载功能的组件,是在引擎及下载器之间的特定钩子(specific hook),处理Downloader传递给引擎的response。通过设置下载器中间件可以实现爬虫自动更换user-agent、IP等功能。
  • Spider Middlewares:爬虫中间件,Spider中间件是在引擎及Spider之间的特定钩子(specific hook),处理spider的输入(response)和输出(items及requests)。自定义扩展、引擎和Spider之间通信功能的组件,通过插入自定义代码来扩展Scrapy功能。

Scrapy操作文档(中文的):https://www.osgeo.cn/scrapy/topics/spider-middleware.html

Scrapy框架的安装

cmd窗口,pip进行安装

pip install scrapy

Scrapy框架安装时常见的问题

找不到win32api模块----windows系统中常见

pip install pypiwin32

创建Scrapy爬虫项目

新建项目

scrapy startproject xxx项目名称

实例:

scrapy startproject tubatu_scrapy_project

项目目录

scrapy.cfg:项目的配置文件,定义了项目配置文件的路径等配置信息

  • 【settings】:定义了项目的配置文件的路径,即./tubatu_scrapy_project/settings文件
  • 【deploy】:部署信息

  • items.py:就是我们定义item数据结构的地方;也就是说我们想要抓取哪些字段,所有的item定义都可以放到这个文件中
  • pipelines.py:项目的管道文件,就是我们说的数据处理管道文件;用于编写数据存储,清洗等逻辑,比如将数据存储到json文件,就可以在这边编写逻辑
  • settings.py:项目的设置文件,可以定义项目的全局设置,比如设置爬虫的 USER_AGENT ,就可以在这里设置;常用配置项如下:
    • ROBOTSTXT_OBEY :是否遵循ROBTS协议,一般设置为False
    • CONCURRENT_REQUESTS :并发量,默认是32个并发
    • COOKIES_ENABLED :是否启用cookies,默认是False
    • DOWNLOAD_DELAY :下载延迟
    • DEFAULT_REQUEST_HEADERS :默认请求头
    • SPIDER_MIDDLEWARES :是否启用spider中间件
    • DOWNLOADER_MIDDLEWARES :是否启用downloader中间件
    • 其他详见链接
  • spiders目录:包含每个爬虫的实现,我们的解析规则写在这个目录下,即爬虫的解析器写在这个目录下
  • middlewares.py:定义了 SpiderMiddleware和DownloaderMiddleware 中间件的规则;自定义请求、自定义其他数据处理方式、代理访问等

自动生成spiders模板文件

cd到spiders目录下,输出如下命令,生成爬虫文件:

scrapy genspider 文件名 爬取的地址

运行爬虫

方式一:cmd启动

cd到spiders目录下,执行如下命令,启动爬虫:

scrapy crawl 爬虫名

方式二:py文件启动

在项目下创建main.py文件,创建启动脚本,执行main.py启动文件,代码示例如下:

code-爬虫文件

import scrapy

class TubatuSpider(scrapy.Spider):
#名称不能重复
name = 'tubatu'
#允许爬虫去抓取的域名
allowed_domains = ['xiaoguotu.to8to.com']
#项目启动之后要启动的爬虫文件
start_urls = ['https://xiaoguotu.to8to.com/pic_space1?page=1'] #默认的解析方法
def parse(self, response):
print(response.text)

code-启动文件

from scrapy import cmdline

#在我们scrapy项目里面,为了方便运行scrapy的项目的时候创建的文件
#使用cmdlie.execute()方法执行爬虫启动命令:scrapy crawl 爬虫名
cmdline.execute("scrapy crawl tubatu".split()) #execute方法需要运行的每一个命令为单独的一个字符串,如:cmdline.execute(['scrapy', 'crawl', 'tubatu']),所以如果命令为一整个字符串时,需要split( )进行分割;#

code-运行结果

示例项目

爬取土巴兔装修网站信息。将爬取到的数据存入到本地MongoDB数据库中;

下图为项目机构,标蓝的文件就是此次code的代码

tubatu.py

 1 import scrapy
2 from tubatu_scrapy_project.items import TubatuScrapyProjectItem
3 import re
4
5 class TubatuSpider(scrapy.Spider):
6
7 #名称不能重复
8 name = 'tubatu'
9 #允许爬虫去抓取的域名,超过这个目录就不允许抓取
10 allowed_domains = ['xiaoguotu.to8to.com','wx.to8to.com','sz.to8to.com']
11 #项目启动之后要启动的爬虫文件
12 start_urls = ['https://xiaoguotu.to8to.com/pic_space1?page=1']
13
14
15 #默认的解析方法
16 def parse(self, response):
17 # response后面可以直接使用xpath方法
18 # response就是一个Html对象
19 pic_item_list = response.xpath("//div[@class='item']")
20 for item in pic_item_list[1:]:
21 info = {}
22 # 这里有一个点不要丢了,是说明在当前Item下面再次使用xpath
23 # 返回的不仅仅是xpath定位中的text()内容,需要再过滤;返回如:[<Selector xpath='.//div/a/text()' data='0元搞定设计方案,限名额领取'>] <class 'scrapy.selector.unified.SelectorList'>
24 # content_name = item.xpath('.//div/a/text()')
25
26 #使用extract()方法获取item返回的data信息,返回的是列表
27 # content_name = item.xpath('.//div/a/text()').extract()
28
29 #使用extract_first()方法获取名称,数据;返回的是str类型
30 #获取项目的名称,项目的数据
31 info['content_name'] = item.xpath(".//a[@target='_blank']/@data-content_title").extract_first()
32
33 #获取项目的URL
34 info['content_url'] = "https:"+ item.xpath(".//a[@target='_blank']/@href").extract_first()
35
36 #项目id
37 content_id_search = re.compile(r"(\d+)\.html")
38 info['content_id'] = str(content_id_search.search(info['content_url']).group(1))
39
40 #使用yield来发送异步请求,使用的是scrapy.Request()方法进行发送,这个方法可以传cookie等,可以进到这个方法里面查看
41 #回调函数callback,只写方法名称,不要调用方法
42 yield scrapy.Request(url=info['content_url'],callback=self.handle_pic_parse,meta=info)
43
44 if response.xpath("//a[@id='nextpageid']"):
45 now_page = int(response.xpath("//div[@class='pages']/strong/text()").extract_first())
46 next_page_url="https://xiaoguotu.to8to.com/pic_space1?page=%d" %(now_page+1)
47 yield scrapy.Request(url=next_page_url,callback=self.parse)
48
49
50 def handle_pic_parse(self,response):
51 tu_batu_info = TubatuScrapyProjectItem()
52 #图片的地址
53 tu_batu_info["pic_url"]=response.xpath("//div[@class='img_div_tag']/img/@src").extract_first()
54 #昵称
55 tu_batu_info["nick_name"]=response.xpath("//p/i[@id='nick']/text()").extract_first()
56 #图片的名称
57 tu_batu_info["pic_name"]=response.xpath("//div[@class='pic_author']/h1/text()").extract_first()
58 #项目的名称
59 tu_batu_info["content_name"]=response.request.meta['content_name']
60 # 项目id
61 tu_batu_info["content_id"]=response.request.meta['content_id']
62 #项目的URL
63 tu_batu_info["content_url"]=response.request.meta['content_url']
64 #yield到piplines,我们通过settings.py里面启用,如果不启用,将无法使用
65 yield tu_batu_info

items.py

 1 # Define here the models for your scraped items
2 #
3 # See documentation in:
4 # https://docs.scrapy.org/en/latest/topics/items.html
5
6 import scrapy
7
8
9 class TubatuScrapyProjectItem(scrapy.Item):
10 # define the fields for your item here like:
11 # name = scrapy.Field()
12
13 #装修名称
14 content_name=scrapy.Field()
15 #装修id
16 content_id = scrapy.Field()
17 #请求url
18 content_url=scrapy.Field()
19 #昵称
20 nick_name=scrapy.Field()
21 #图片的url
22 pic_url=scrapy.Field()
23 #图片的名称
24 pic_name=scrapy.Field()

piplines.py

 1 # Define your item pipelines here
2 #
3 # Don't forget to add your pipeline to the ITEM_PIPELINES setting
4 # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
5
6
7 # useful for handling different item types with a single interface
8 from itemadapter import ItemAdapter
9
10 from pymongo import MongoClient
11
12 class TubatuScrapyProjectPipeline:
13
14 def __init__(self):
15 client = MongoClient(host="localhost",
16 port=27017,
17 username="admin",
18 password="123456")
19 mydb=client['db_tubatu']
20 self.mycollection = mydb['collection_tubatu']
21
22 def process_item(self, item, spider):
23 data = dict(item)
24 self.mycollection.insert_one(data)
25 return item

settings.py

main.py

1 from scrapy import cmdline
2
3 #在我们scrapy项目里面,为了方便运行scrapy的项目的时候创建的文件
4 #使用cmdlie.execute()方法执行爬虫启动命令:scrapy crawl 爬虫名
5 cmdline.execute("scrapy crawl tubatu".split()) #execute方法需要运行的每一个命令为单独的一个字符串,如:cmdline.execute(['scrapy', 'crawl', 'tubatu']),所以如果命令为一整个字符串时,需要split( )进行分割;#

爬虫(9) - Scrapy框架(1) | Scrapy 异步网络爬虫框架的更多相关文章

  1. greenev —— Python 异步网络服务框架

    greenev是一个基于greenlet协程,事件驱动,非阻塞socket模型的Python网络服务框架,它使得可以编写同步的代码,却得到异步执行的优点. 本项目受到gevent, openresty ...

  2. Android之封装好的异步网络请求框架

    1.简介  Android中网络请求一般使用Apache HTTP Client或者采用HttpURLConnection,但是直接使用这两个类库需要写大量的代码才能完成网络post和get请求,而使 ...

  3. Linux企业级项目实践之网络爬虫(3)——设计自己的网络爬虫

    网络抓取系统分为核心和扩展组件两部分.核心部分是一个精简的.模块化的爬虫实现,而扩展部分则包括一些便利的.实用性的功能.目标是尽量的模块化,并体现爬虫的功能特点.这部分提供简单.灵活的API,在基本不 ...

  4. 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)

    问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建 ...

  5. Scrapy (网络爬虫框架)入门

    一.Scrapy 简介: Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,Scrapy 使用了 Twisted['twɪstɪd](其主要对手是Tornado) ...

  6. 网络爬虫值scrapy框架基础

    简介 Scrapy是一个高级的Python爬虫框架,它不仅包含了爬虫的特性,还可以方便的将爬虫数据保存到csv.json等文件中. 首先我们安装Scrapy. 其可以应用在数据挖掘,信息处理或存储历史 ...

  7. 一篇文章教会你理解Scrapy网络爬虫框架的工作原理和数据采集过程

    今天小编给大家详细的讲解一下Scrapy爬虫框架,希望对大家的学习有帮助. 1.Scrapy爬虫框架 Scrapy是一个使用Python编程语言编写的爬虫框架,任何人都可以根据自己的需求进行修改,并且 ...

  8. 洗礼灵魂,修炼python(72)--爬虫篇—爬虫框架:Scrapy

    题外话: 前面学了那么多,相信你已经对python很了解了,对爬虫也很有见解了,然后本来的计划是这样的:(请忽略编号和日期,这个是不定数,我在更博会随时改的) 上面截图的是我的草稿 然后当我开始写博文 ...

  9. Scrapy 轻松定制网络爬虫(转)

    网络爬虫(Web Crawler, Spider)就是一个在网络上乱爬的机器人.当然它通常并不是一个实体的机器人,因为网络本身也是虚拟的东西,所以这个“机器人”其实也就是一段程序,并且它也不是乱爬,而 ...

随机推荐

  1. 通过OptaPlanner优化 COVID-19 疫苗接种预约安排(2)

    本文为OptaPlanner官方博客<Optimizing COVID-19 vaccination appointment scheduling>的第二篇译文.第一篇介绍了通过OptaP ...

  2. tmux 快速上手

    tmux 介绍 截图 dwm + alacritty + tmux + neovim + ranger: 下载 tmux 可以说是一款 TUI 开发人员不可或缺的终端复用神器. $ yay -S tm ...

  3. python 本地配置文件库 Dynaconf 简介

    [前言] 在项目中经常会遇到以下几种需要用到配置文件的场景: 相同的配置参数用在不同的代码中,如果需要调整,则需要手动将各个使用到的地方都相应调整. 密码等信息不想硬编码在项目文件中. 配置文件的格式 ...

  4. java基础4.20

    1.是否可以从一个static方法内部发出对非static方法的调用? 不可以.因为非static方法是要与对象关联在一起的,必须创建一个对象后,才可以在该对象上进行方法调用,而static方法调用时 ...

  5. Blazor和Vue对比学习(基础1.3):属性和父子传值

    组件除了要解决视图层展示.视图层与逻辑层的数据绑定,还需要解决一个重大问题,就是在组件树中实现数据传递,包括了父到子.子到父.祖到孙,以及任意组织之间.而我们上一章讲到的实现双向绑定的两个指令,Vue ...

  6. 对象、Map、Set、WeakMap、WeakSet

    对象.Map.Set.WeakMap.WeakSet 本文写于 2020 年 11 月 24 日 总的来说,Set 和 Map 主要的应用场景分别在于数据重组和数据储存.Set 是一种叫做「集合」的数 ...

  7. MySQL 的 EXPLAIN 语句及用法

    在MySQL中 DESCRIBE 和 EXPLAIN 语句是相同的意思.DESCRIBE 语句多用于获取表结构,而 EXPLAIN 语句用于获取查询执行计划(用于解释MySQL如何执行查询语句). 通 ...

  8. arts-week9

    Algorithm 521. Longest Uncommon Subsequence I - LeetCode Review 如何搭建一个私有的CDN? 大部分情况下,我们使用市场上现有的 CDN ...

  9. Windows环境下启动Redis报错:Could not create server TCP listening socket 127.0.0.1:6379: bind: 操作成功完成。(已解决)

    问题描述: 今天在windows环境下启动Redis时启动失败报错: 解决方案: ①运行命令:redis-cli.exe ②退出Redis ③运行命令:redis-server.exe redis.w ...

  10. k8s的api资源

    NAME SHORTNAMES APIGROUP NAMESPACED KIND 资源用途说明 bindings     TRUE Binding 已弃用.用于记录一个object和另一个object ...