膜拜 rqy。

题意:

求:

\[\sum_{i=1}^n \sigma_0(i^2)
\]

首先我们知道 \(\sigma_0((p^k)^2)=2 \times k + 1=k+(k+1)=\sigma_0(p^k)+\sigma_0(p^{k-1})=(\mu^2 * \sigma_0)(p^k)\)

那么我们大力展开:

\[\sum_{i=1}^n\sum_{d|i}\mu^2(d) \times \sigma_0(\frac n d)
\]
\[\sum_{d=1}^n \mu^2(d)\sum_{i=1}^{\lfloor \frac n d \rfloor}\sigma_0(\frac n d)
\]

众所周知 \(\sum_{i=1}^n \sigma_0(i)=\sum_{i=1}^n \lfloor \frac n i \rfloor,\sum_{i=1}^n\mu^2(i)=\sum_{i=1}^{\sqrt n}\mu(i)\lfloor \frac n {i^2} \rfloor\),那么这里再使用杜教筛的数据分治即可做到 \(O(n^{\frac 2 3}+Tn^{\frac 2 3})\)。

稍微卡下常数就能 11.53s 了。实际上容易发现瓶颈其实是线性筛。。。

#include<unordered_map>
#include<cstdio>
#include<bitset>
#include<cmath>
typedef unsigned ui;
typedef __uint128_t L;
typedef unsigned long long ull;
const ui M=1e8+5;
ui T,lim,d[M],s[M];ui top,pri[5761456];ull n[10005];std::bitset<M>vis,mu1,mu2;
std::unordered_map<ull,ull>s1,d1;
struct FastDiv{
ull b,m;
FastDiv(const ull&x=1):b(x),m(ull((L(1)<<64)/x)){}
friend inline ull operator/(const ull&a,const FastDiv&mod){
if(mod.b==1)return a;ull r=1+(L(mod.m)*a>>64);return r-(a-r*mod.b>>63);
}
}F[1000005],G[1000005];
inline void sieve(const ui&n){
ui i,j,x;d[1]=1;vis[1]=1;mu1[1]=1;
for(i=1;i<=1000001;++i)F[i]=FastDiv(i),G[i]=FastDiv(1ull*i*i);
for(i=2;i<=n;++i){
if(!vis[i])mu2[pri[++top]=i]=true,d[i]=s[i]=2;
for(j=1;j<=top&&(x=i*pri[j])<=n;++j){
if(vis[x]=true,!(i%pri[j])){
d[x]=ui(d[i]/F[s[i]])*(s[x]=s[i]+1);break;
}
d[x]=d[i]<<1;s[x]=2;(mu1[i]||mu2[i])&&(mu1[x]=mu1[i]^1,mu2[x]=mu2[i]^1);
}
}
for(i=1;i<=n;++i)s[i]=mu1[i]||mu2[i],s[i]+=s[i-1],d[i]+=d[i-1];
}
inline ull S(const ull&n){
if(n<lim)return d[n];if(d1.find(n)!=d1.end())return d1[n];
ui i;ull ans(0);for(i=1;1ull*i*i<=n;++i)ans+=n/F[i];return--i,d1[n]=(ans<<1)-1ull*i*i;
}
inline ull Sum(const ull&n){
if(n<lim)return s[n];if(s1.find(n)!=s1.end())return s1[n];ui i;ull ans(0);
for(i=1;1ull*i*i<=n;++i)mu1[i]&&(ans+=n/G[i]),mu2[i]&&(ans-=n/G[i]);return s1[n]=ans;
}
inline ull Solve(const ull&n){
ull L,R,ans(0);ui x;
for(L=1;1ull*lim*L<=n;++L)if(mu1[L]||mu2[L])ans+=S(n/F[L]);
for(;1ull*L*L<=n;++L)if(mu1[L]||mu2[L])ans+=d[n/F[L]];
for(x=n/F[L];L<=n;L=R+1)1ull*x*L>n&&--x,ans+=d[x]*(Sum(R=n/F[x])-Sum(L-1));
return ans;
}
signed main(){
ull mx(0);scanf("%u",&T);for(ui i=1;i<=T;++i)scanf("%llu",n+i),n[i]>mx&&(mx=n[i]);sieve(lim=pow(mx,2./3));
for(ui i=1;i<=T;++i)printf("%llu\n",Solve(n[i]));
}

SP20173题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Maven获取resources的文件路径、读取resources的文件

    路径问题一切要看编译后的文件路径 比如,源文件路径是: 而编译后的文件路径为: 也就是说,resources文件夹下的文件在编译后,都是为根目录,这种情况下,比如我要读取resources 文件夹下的 ...

  2. requests库session保持持久会话

      requests中cookie的原理 http://blog.csdn.net/zhu_free/article/details/50563756   requests - cookies的实现例 ...

  3. Blob检测

    一 Laplace 算子 使用一阶微分算子可以检测图像边缘.对于剧烈变化的图像边缘,一阶微分效果比较理想.但对于缓慢变化的图像边缘,通过对二阶微分并寻找过零点可以很精确的定位边缘中心.二阶微分即为 L ...

  4. Solution -「AGC 026D」Histogram Coloring

    \(\mathcal{Description}\)   Link.   有 \(n\) 列下底对齐的方格纸排成一行,第 \(i\) 列有 \(h_i\) 个方格.将每个方格染成黑色或白色,求使得任意完 ...

  5. 基于myscript.js的web手写板(支持中文识别)

    网上的手写板模板不少,但是支持中文识别的却不多,而且基本上都收费的,毕竟别人的中文库凭什么免费提供给你(说好的开源呢?说好的开源呢? ←_←) 好了,进入主题,myscript.js,在官网其实我并没 ...

  6. Spring Bean配置加载为BeanDefinition全过程(注解配置)

    生产中有很多形式的的配置方式,本文仅分析注解配置.对于其他形式的配置区别主观以为主要在配置文件的解析过程不同,不一一分析了.本文以利用Dubbo框架开发rpc服务端为例详细阐述配置类的解析.数据保存. ...

  7. Vue.js——学习笔记

    Vue-自学笔记 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅 ...

  8. (反射+内省机制的运用)简单模拟spring IoC容器的操作

    简单模拟spring IoC容器的操作[管理对象的创建.管理对象的依赖关系,例如属性设置] 实体类Hello package com.shan.hello; public class Hello { ...

  9. idea 自定义toString

    实现功能: 1.自定义json格式 2.字符及时间类型添加null判断 3.时间进行格式化 步骤: 1.alt+insert-----toString---setting----templates 2 ...

  10. jmeter重点(详细)

    之前,写过一篇文章:jmeter,学这些重点就可以了,今天就来把一些重点细节点说一下. 测试计划 可以理解为各种测试元件的容器 其中: 定义整个测试中使用的重复值(全局变量),一般定义服务器的ip.端 ...