numpy.linalg 模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。
一、计算逆矩阵

线性代数中,矩阵A与其逆矩阵A ^(-1)相乘后会得到一个单位矩阵I。该定义可以写为A *A ^(-1) =1。numpy.linalg 模块中的 inv 函数可以计算逆矩阵。

1) 用 mat 函数创建示例矩阵

import numpy as np
import matplotlib.pyplot as plt A = np.mat("0 1 2;1 0 3;4 -3 8")

2)用 inv 函数计算逆矩阵

inverse = np.linalg.inv(A)
print("inverse of A\n", inverse)

运行结果如下:

A
[[ 0 1 2]
[ 1 0 3]
[ 4 -3 8]]
inverse of A
[[-4.5 7. -1.5]
[-2. 4. -1. ]
[ 1.5 -2. 0.5]]

3)可能通过原矩阵和逆矩阵相乘的结果来验证

print ("Check\n", A * inverse) #验证计算,原矩阵和逆矩阵相乘的,单位矩阵

结果:

Check
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

二、求解线性方程组

线性议程组  Ax=b

1)分另创建矩阵A和数组b

A = np.mat("1 -2 1;0 2 -8;-4 5 9") #用mat()函数创建示例矩阵
print("A\n", A)
b = np.array([0, 8, -9])

2)用solve(A, b)解出x,用dot()函数进行验证,并打印

x = np.linalg.solve(A, b)
print("Solution", x)
print("Check\n", np.dot(A , x)) #用dot()函数检查求得的解是否正确

三、特征值和特征向量

特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量,特征向量是关于特征值的向量。在numpy.linalg 模块中, eigvals函数可以计算矩阵的特征值,而 eig 函数可以返回一个包含特征值和对应的特征向量的元组。

用 eigvals 函数求解特征值

用 eig 函数求解特征值和特征向量 ,如下代码:

print("Eigenvalues", np.linalg.eigvals(A))
eigenvalues, eigenvectors = np.linalg.eig(A)
print( "First tuple of eig", eigenvalues)
print(" Second tuple of eig\n", eigenvectors)

四、奇异值分解

奇异值分解,是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积。奇异值分解是特征值分解一种推广。在 numpy.linalg 模块中的svd()函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值(计算出来结果可能是虚数)。

U, Sigma, V = np.linalg.svd(A, full_matrices=False)# 用svd() 函数分解矩阵
print ("U:",U)
print ("Sigma:",Sigma)
print ("V:", V)
print ("Product\n", U * np.diag(Sigma) * V) #用diag函数生成完整的奇异值矩阵

五、广义

pinv 函数进行求解,计算广义逆矩阵需要用到奇异值分解函数pinv(),行列式计算用np.linalg中的函数det():

#使用pinv函数计算广义逆矩阵:
A = np.mat("4 11 14;8 7 -2")
pseudoinv = np.linalg.pinv(A)
print("Pseudo inverse:\n", pseudoinv)
#计算矩阵的行列式
print("\n")
B = np.mat("3 4;5 6")
print("Determinant:", np.linalg.det(B))

全部代码如下:

import numpy as np
import matplotlib.pyplot as plt A = np.mat("0 1 2;1 0 3;4 -3 8") #用mat()函数创建示例矩阵
print ("A\n",A)
inverse = np.linalg.inv(A) #用inv()函数计算逆矩阵
print("inverse of A\n", inverse)
print ("Check\n", A * inverse) #验证计算,原矩阵和逆矩阵相乘的,单位矩阵
# 求解线性方程组
A = np.mat("1 -2 1;0 2 -8;-4 5 9") #用mat()函数创建示例矩阵
b = np.array([0, 8, -9])
x = np.linalg.solve(A, b)
print("Solution", x)
print("Check\n", np.dot(A , x)) #用dot()函数检查求得的解是否正确
#特征值和特征向量 print("Eigenvalues", np.linalg.eigvals(A)) #eigvals函数可以计算矩阵的特征值
eigenvalues, eigenvectors = np.linalg.eig(A) #用 eig 函数求解特征值和特征向量
print( "First tuple of eig", eigenvalues)
print(" Second tuple of eig\n", eigenvectors) #奇异值分解
U, Sigma, V = np.linalg.svd(A, full_matrices=False)# 用svd() 函数分解矩阵
print ("U:",U)
print ("Sigma:",Sigma)
print ("V:", V)
print ("Product\n", U * np.diag(Sigma) * V) #用diag函数生成完整的奇异值矩阵
#使用pinv函数计算广义逆矩阵:
A = np.mat("4 11 14;8 7 -2")
pseudoinv = np.linalg.pinv(A)
print("Pseudo inverse:\n", pseudoinv)
#计算矩阵的行列式
print("\n")
B = np.mat("3 4;5 6")
print("Determinant:", np.linalg.det(B))

运行结果:

本篇介绍了一些numpy.linalg 模块中常用的函数,

Python数据分析--Numpy常用函数介绍(9)-- 与线性代数有关的模块linalg的更多相关文章

  1. Python数据分析--Numpy常用函数介绍(2)

    摘要:本篇我们将以分析历史股价为例,介绍怎样从文件中载入数据,以及怎样使用NumPy的基本数学和统计分析函数.学习读写文件的方法,并尝试函数式编程和NumPy线性代数运算,来学习NumPy的常用函数. ...

  2. Python数据分析--Numpy常用函数介绍(4)--Numpy中的线性关系和数据修剪压缩

    摘要:总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一 ...

  3. Python数据分析--Numpy常用函数介绍(5)--Numpy中的相关性函数

    摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票 ...

  4. Python数据分析--Numpy常用函数介绍(6)--Numpy中矩阵和通用函数

    在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat . matrix 以及 bmat 函数来创建矩阵. 一.创建矩阵 mat 函数创 ...

  5. Python数据分析--Numpy常用函数介绍(6)--Numpy中与股票成交量有关的计算

    成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图.周线图.月线图甚至是5分钟.30分钟.60分钟图中绘制. 股票市场成交量的变化反映了资 ...

  6. Python数据分析--Numpy常用函数介绍(3)

    摘要:先汇总相关股票价格,然后有选择地对其分类,再计算移动均线.布林线等. 一.汇总数据 汇总整个交易周中从周一到周五的所有数据(包括日期.开盘价.最高价.最低价.收盘价,成交量等),由于我们的数据是 ...

  7. Python数据分析--Numpy常用函数介绍(9)--Numpy中几中常见的图形

    在NumPy中,所有的标准三角函数如sin.cos.tan等均有对应的通用函数. 一.利萨茹曲线 (Lissajous curve)利萨茹曲线是一种很有趣的使用三角函数的方式(示波器上显示出利萨茹曲线 ...

  8. Python数据分析-Numpy数值计算

    Numpy介绍: NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能: 1)ndarray,一个多维数组结构,高效且节省空间 2)无需循环对整组 ...

  9. Python数据分析——numpy基础简介

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:基因学苑 NumPy(Numerical Python的简称)是高性 ...

随机推荐

  1. 为 map 中不存在的 key 提供缺省值

    需求 需要往一个复杂的 map 中写入数据,或为 map 中不存在 key 提供 default value java standard library Map<K, List<V> ...

  2. Linux下将一个文件压缩分包成多个小文件

    压缩分包 将文件test分包压缩成10M 的文件: tar czf - test | split -b 10m - test.tar.gz 解压 将第一步分拆的多个包解压: cat test.tar. ...

  3. 什么事JAVA

    1.什么是Java Java是一门面向对象的高级编程语言,不仅吸收了C++语言的各种优点,比如继承了C++语言面向对象的 技术核心.还摒弃了C++里难以理解的多继承.指针等概念,,同时也增加了垃圾回收 ...

  4. 使用JavaCV实现读取视频信息及自动截取封面图

    概述 最近在对之前写的一个 Spring Boot 的视频网站项目做功能完善,需要利用 FFmpeg 实现读取视频信息和自动截图的功能,查阅资料后发现网上这部分的内容非常少,于是就有了这篇文章. 视频 ...

  5. 【C++ 字符串题目】 输入三个人名,按字母顺序排序输出

    题目来源:https://acm.ujn.edu.cn Problem A: [C++ 字符串] 输入三个人名,按字母顺序排序输出 Time Limit: 1 Sec  Memory Limit: 1 ...

  6. BUUCTF-qr

    qr 签到题

  7. node线上项目连接mysql出现 504 Gateway Time-Out

    var connection = mysql.createConnection({host : 'localhost',user : 'root',password : '123456',port: ...

  8. java中常见的锁

    1.悲观锁 认为别的线程都会修改数据,二话不说先锁上 synchronized 2.乐观锁 乐观豁达,起初不操作.最后修改的时候比对一下版本,不一致再上锁 3.可重入锁 外层锁了之后,内层仍可以直接使 ...

  9. Redis主从复制+Keepalived+VIP漂移实现HA高可用技术之详细教程

    1.大家可以先看我的单台Redis安装教程,链接在此点击Redis在CentOS for LInux上安装详细教程 2.第一台redis配置,是正常配置.作为MASTER主服务器,第二台redis的配 ...

  10. 12月15日DP作业

    [APIO2014]连珠线 考虑一组以 \(x\) 为中点的蓝边,有两种可能: \[son[x]->x->fa[x] \] \[son[x]->x->son[x] \] 其中若 ...