目录

1 什么是对象跟踪和GOTURN

2 在OpenCV中使用GOTURN

3 GOTURN优缺点

4 参考


在这篇文章中,我们将学习一种基于深度学习的目标跟踪算法GOTURN。GOTURN在Caffe中搭建,现在已移植到OpenCV Tracking API,我们将使用此API在C ++和Python中使用GOTURN。

1 什么是对象跟踪和GOTURN

对象跟踪的目标是跟踪视频序列中的对象。使用视频序列的帧和边界框初始化跟踪算法,以获得我们感兴趣的对象的位置。跟踪算法输出所有后续帧的边界框。有关对象跟踪的更多详细信息,请查看我们关于OpenCV目标跟踪API的帖子。

https://blog.csdn.net/LuohenYJ/article/details/89029816

GOTURN是Generic Object Tracking Using Regression Networks的缩写,是一种基于深度学习的跟踪算法。

大多数跟踪算法都以在线方式进行训练。换句话说,跟踪算法学习在运行时不停获取被跟踪对象的特点。因此,许多实时跟踪器依赖于在线学习算法,这些算法通常比基于深度学习的解决方案快得多。GOTURN通过以离线方式学习对象的运动,改变了我们将深度学习应用于跟踪问题的方式。GOTURN模型在数千个视频序列上进行训练,不需要在运行时进行任何学习。

GOTURN主要论文见:

http://davheld.github.io/GOTURN/GOTURN.pdf

如上图所示GOTURN将两个裁剪帧作为输入,并输出第二帧中对象周围的边界框。在第一帧(也称为前一帧)中对象的位置是已知的,裁剪前一帧并且被裁剪帧大小为对象边界框的两倍大小。第一个裁剪框中的对象始终居中。用于裁剪第一帧的边界框也用于裁剪第二帧中对象的位置(也称为当前帧)。由于对象可能已移动,因此对象不在第二帧中居中。训练卷积神经网络(CNN)以预测第二帧中边界框的位置。

下图所示为GOTURN的架构。如前所述,它需要两个裁剪框作为输入。请注意,底部为前一帧,上面为第二帧(当前帧)。我们的目标就是在当前帧画出目标的边界框。

两个帧都通过一组卷积层。即CaffeNet架构的前五个卷积层。这些卷积层的输出被连接成长度为4096的单个矢量。输出层的节点有四个,表示预测框的左上角顶点坐标和右下角顶点坐标。

2 在OpenCV中使用GOTURN

作者发布了GOTURN的caffe模型。您可以使用Caffe尝试,但在本教程中,我们将使用OpenCV的跟踪API。步骤如下:

1)下载GOTURN模型文件

GOTURN的模型文件见:https://github.com/spmallick/goturn-files

需要下载的是GOTURN的caffemodel and prototxt文件。约370 MB。

2)把caffemodel和prototxt文件放到和函数调用文件cpp/py文件同一个目录下,文件名必须为goturn.caffemodel和goturn.prototxt,模型下载下来不用改名字就行了。

3)代码实现,类似其他OpenCV调用模块,OpenCV版本3.4.3以上

依然是创建跟踪函数模型,更新函数模型。当跟踪器失败时,tracker.update返回0(false)。如果我们将跟踪器与检测器一起使用,则可以使用此信息。当跟踪器发生故障时,检测器可用于检测对象并重新初始化跟踪器。

代码下载地址:

https://github.com/luohenyueji/OpenCV-Practical-Exercise

代码如下:

C++:

// GOTURN_SingleTracker.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
// #include "pch.h"
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/tracking.hpp> using namespace cv;
using namespace std; int main()
{
// Create tracker
Ptr<Tracker> tracker = TrackerGOTURN::create(); // Read video
VideoCapture video("video/chaplin.mp4"); // Exit if video is not opened
if (!video.isOpened())
{
cout << "Could not read video file" << endl;
return EXIT_FAILURE;
} // Read first frame
Mat frame;
if (!video.read(frame))
{
cout << "Cannot read video file" << endl;
return EXIT_FAILURE;
} // Define initial boundibg box
Rect2d bbox(287, 23, 86, 320); // Uncomment the line below to select a different bounding box
//bbox = selectROI(frame, false); // Initialize tracker with first frame and bounding box
tracker->init(frame, bbox); while (video.read(frame))
{
// Start timer
double timer = (double)getTickCount(); // Update the tracking result
bool ok = tracker->update(frame, bbox); // Calculate Frames per second (FPS)
float fps = getTickFrequency() / ((double)getTickCount() - timer); if (ok)
{
// Tracking success : Draw the tracked object
rectangle(frame, bbox, Scalar(255, 0, 0), 2, 1);
}
else
{
// Tracking failure detected.
putText(frame, "Tracking failure detected", Point(100, 80), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 255), 2);
} // Display tracker type on frame
putText(frame, "GOTURN Tracker", Point(100, 20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(50, 170, 50), 2); // Display FPS on frame
putText(frame, "FPS : " + to_string(int(fps)), Point(100, 50), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(50, 170, 50), 2);
// Display frame.
imshow("Tracking", frame); // Exit if ESC pressed.
if (waitKey(1) == 27) break;
} return 0;
}

python:

# Import modules
import cv2, sys, os if not (os.path.isfile('goturn.caffemodel') and os.path.isfile('goturn.prototxt')):
errorMsg = '''
Could not find GOTURN model in current directory.
Please ensure goturn.caffemodel and goturn.prototxt are in the current directory
''' print(errorMsg)
sys.exit() # Create tracker
tracker = cv2.TrackerGOTURN_create() # Read video
video = cv2.VideoCapture("chaplin.mp4") # Exit if video not opened
if not video.isOpened():
print("Could not open video")
sys.exit() # Read first frame
ok,frame = video.read()
if not ok:
print("Cannot read video file")
sys.exit() # Define a bounding box
bbox = (276, 23, 86, 320) # Uncomment the line below to select a different bounding box
bbox = cv2.selectROI(frame, False) # Initialize tracker with first frame and bounding box
ok = tracker.init(frame,bbox) while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break # Start timer
timer = cv2.getTickCount() # Update tracker
ok, bbox = tracker.update(frame) # Calculate Frames per second (FPS)
fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer); # Draw bounding box
if ok:
# Tracking success
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
else :
# Tracking failure
cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2) # Display tracker type on frame
cv2.putText(frame, "GOTURN Tracker", (100,20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50),2); # Display FPS on frame
cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2); # Display result
cv2.imshow("Tracking", frame) # Exit if ESC pressed
k = cv2.waitKey(1) & 0xff
if k == 27:
break

3 GOTURN优缺点

与其他基于深度学习的跟踪器相比,GOTURN速度更快。它在Caffe的GPU上以100FPS运行,在OpenCV CPU中以20FPS运行。即使跟踪器是通用的,理论上,通过使用特定类型的对象偏置训练集,可以在特定对象(例如行人)上获得优异的结果。

个人观点:

GOTURN速度和MIL水平差不多,如果是在特定对象上进行目标跟踪,精度能够达到KCF算法的水平。如果不是特定对象,精度和BOOSTING差不多。特定对象是指模型训练集的场景。总的来说GOTURN不推荐,还不如用KCF算法。除非你有大量数据训练GOTURN模型。不过有这个数据和算法还不如训练目标检测模型,每帧都检测。

4 参考

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

[OpenCV实战]15 基于深度学习的目标跟踪算法GOTURN的更多相关文章

  1. 开源项目(9-0)综述--基于深度学习的目标跟踪sort与deep-sort

    基于深度学习的目标跟踪sort与deep-sort https://github.com/Ewenwan/MVision/tree/master/3D_Object_Detection/Object_ ...

  2. [OpenCV实战]5 基于深度学习的文本检测

    目录 1 网络加载 2 读取图像 3 前向传播 4 处理输出 3结果和代码 3.1结果 3.2 代码 参考 在这篇文章中,我们将逐字逐句地尝试找到图片中的单词!基于最近的一篇论文进行文字检测. EAS ...

  3. 基于深度学习的目标检测算法:SSD——常见的目标检测算法

    from:https://blog.csdn.net/u013989576/article/details/73439202 问题引入: 目前,常见的目标检测算法,如Faster R-CNN,存在着速 ...

  4. [OpenCV实战]1 基于深度学习识别人脸性别和年龄

    目录 1基于CNN的性别分类建模原理 1.1 人脸识别 1.2 性别预测 1.3 年龄预测 1.4 结果 2 代码 参考 本教程中,我们将讨论应用于面部的深层学习的有趣应用.我们将估计年龄,并从单个图 ...

  5. Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用

    摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...

  6. #Deep Learning回顾#之基于深度学习的目标检测(阅读小结)

    原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主 ...

  7. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN,Faster R-CNN

    基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.obj ...

  8. [OpenCV实战]7 使用YOLOv3和OpenCV进行基于深度学习的目标检测

    目录 1 YOLO介绍 1.1 YOLOv3原理 1.2 为什么要将OpenCV用于YOLO? 1.3 在Darknet和OpenCV上对YOLOv3进行速度测试 2 使用YOLOv3进行对象检测(C ...

  9. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

随机推荐

  1. 极客的浪漫「GitHub 热点速览 v.22.41」

    极客的浪漫,是怀旧复古的开源操作系统 SerenityOS 献上的情书:也是实用派用 AI 作画工具 novelai-bot 生成二次元女友.LxgwWenKai 用仿宋 / 楷体中文字体书写而成的那 ...

  2. Double数据运算过程中精度调整

    Double数据进行运算时,容易出现多位小数的精度问题 ①问题现象 ②解决方案 使用BigDecimal类型来进行Double类型数据运算 创建BigDecimal类型对象时将Double类型的数据转 ...

  3. 应用DriverManager类创建sqlserver数据库连接实例 JSP中使用数据库

    JSP中使用数据库 1.JDBC介绍 java数据库连接(java Database Connectivity ,JDBC)是一种用于执行SQL语句的JavaAPI ,由一组使用java编程语言编写的 ...

  4. Ruoyi表单构建

    Ruoyi表单构建通过拖动组件就能自动生成前端代码,很方便,所以本文简单通过上层函数源码来梳理一下大致流程,如有需要再自行仔细一行行分析底层代码. 组件拖动 实现组件拖动功能主要依赖第三方库:VueD ...

  5. Selenium4+Python3系列(六) - Selenium的三种等待,强制等待、隐式等待、显式等待

    为什么要设置元素等待 直白点说,怕报错,哈哈哈! 肯定有人会说,这也有点太直白了吧. 用一句通俗易懂的话就是:等待元素已被加载完全之后,再去定位该元素,就不会出现定位失败的报错了. 如何避免元素未加载 ...

  6. Java多线程-ThreadPool线程池(三)

    开完一趟车完整的过程是启动.行驶和停车,但老司机都知道,真正费油的不是行驶,而是长时间的怠速.频繁地踩刹车等动作.因为在速度切换的过程中,发送机要多做一些工作,当然就要多费一些油. 而一个Java线程 ...

  7. 用Nodejs 实现一个简单的 Redis客户端

    目录 0. 写在前面 1. 背景映入 2. 数据库选择 3. Nodejs TCP连接 3. 代码编写 4. 实验 5. wireshark 抓包分析 6. 杂与代码 0. 写在前面 大家如果有去看过 ...

  8. CF240F (26颗线段树计数)

    题目链接:Topcoder----洛谷 题目大意: 给定一个长为n的由a到z组成的字符串,有m次操作,每次操作将[l,r]这些位置的字符进行重排,得到字典序最小的回文字符串,如果无法操作就不进行. 思 ...

  9. 系统启动后bond配置不生效问题定位

    背景描述 为了适配新功能,裸金属服务的磁盘镜像中做了如下修改: dracut添加network, iscsi模块 grub添加rd.iscsi.firmware=1参数 删除网卡配置文件/etc/sy ...

  10. perl reverse函数

    转载至  Perl - 列表 - reverse 操作 reverse(逆转)操作将输入的一串列表(可能是数组)按相反的顺序返回. my @arr=("Head_PMA1",&qu ...