Codeforces Round #789 (Div. 2) A-C

A

题目

https://codeforces.com/problemset/problem/1677/A

题解

思路

知识点:模拟。

(比较显然,不写了)

时间复杂度 \(O(nlogn)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int a[100];

int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
for(int i = 0;i<n;i++){
cin>>a[i];
}
sort(a,a+n);
int cnt = 0;
bool ok = false;
for(int i = 0;i<n-1;i++){
if(a[i] == a[i+1] || !a[i]){
ok = true;
break;
}
}
for(int i = 0;i<n;i++){
if(a[i]) cnt++;
}
cout<<(cnt+!ok)<<'\n';
}
return 0;
}

B

题目

https://codeforces.com/problemset/problem/1678/B1

https://codeforces.com/problemset/problem/1678/B2

题解

思路

知识点:贪心。

对于给定偶数长度的0/1串,奇数子串与其他串(不论奇偶的其他)的分界点有且仅有一个位于某一对中间。比如,\(111001100011\) 划分以后变成 \(11,10,01,10,00,11\) ,发现 \(111\) 的末尾 \(1\) 出现在 \(10\) 中,\(000\) 的首部 \(0\) 出现在 \(10\) 中。因此我们可以通过按对(即两个两个不相交)遍历,若遇到一次 \(01\) 或 \(10\) 则操作次数加 \(1\) 。

与此同时,我们发现若修改一处 \(01\) 或 \(10\) 可以修改成 \(00\) 或 \(11\) ,从而被前段或者后段的 \(00\) 或 \(11\) 吸收不改变总段数,因此可以将修改等价认为直接删除这段 \(01\) 或 \(10\) ,即在程序中不考虑这种情况对总数影响,只需要记录 \(00\) 或 \(11\) 的连续成段情况、特别地,如果 \(0/1\) 串本身没有 \(00\) 或 \(11\) 的对,或者说全串由 \(01\) 或 \(10\) 组成,那么它们可以自成唯一一段互相吸收,需要特判。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
string s;
cin>>s;
int op = 0,cnt = 0;
char pre = '?';
for(int i = 0;i<n;i+=2){///两两配对
if(s[i] != s[i+1]) op++;///操作次数+1
else{
if(pre != s[i]) cnt++;///不同数字,段数+1
pre = s[i];///更新段数字
}
}
cout<<op<<' '<<max(1,cnt)<<'\n';///如果没有00/11吸收01/10,那么01/10可以自成一段
}
return 0;
}

C

题目

https://codeforces.com/problemset/problem/1677/A

题解

思路

知识点:DP,枚举。

注意到 \(a<b<c<d\) ,可以考虑枚举 \(b,c\) 两个点,用 \(a,d\) 分别在 \([1,b-1]\) 和 \([c+1,n]\) 的区间匹配。

匹配条件是 \(p_a < p_c \and p_b >p_d\) ,考虑用数组 \(cnt[i][j]\) 表示满足 \(p_x \leq j , x \in [1,i]\) 的 \(x\) 个数。于是 \(a\) 的匹配个数是 \(cnt[b-1][p[c]]\) ,\(d\) 的匹配个数是 \(cnt[n][p[b]] - cnt[c][p[b]]\) 。因此,对于一组 \(b,c\) 可以得到 \(cnt[b-1][p[c]] \cdot (cnt[n][p[b]] - cnt[c][p[b]])\) 的组数,枚举 \(b,c\) 累加即可。

时间复杂度 \(O(n^2)\)

空间复杂度 \(O(n^2)\)

代码

#include <bits/stdc++.h>

using namespace std;

int p[5007],cnt[5007][5007];//注意初始化

int main(){
std::ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
for(int i = 1;i<=n;i++){
cin>>p[i];
}
for(int i = 1;i<=n;i++){///预处理cnt[i][j] 为 [1,i] 中小于等于 j 的数字个数
for(int j = 1;j<=n;j++) cnt[i][j] = cnt[i-1][j];///传递上个区间
for(int j = p[i];j<=n;j++) cnt[i][j]++;///j从p[i]开始都大于等于i,遍历+1
}
///枚举b,c,以此为准求[1,b-1]和[c+1,d]间合法a,d个数
long long ans = 0;
for(int b = 2;b<=n-2;b++){
for(int c = b+1;c<=n-1;c++){
ans += 1LL * cnt[b-1][p[c]] * (cnt[n][p[b]] - cnt[c][p[b]]);
}
}
cout<<ans<<'\n';
}
return 0;
}

Codeforces Round #789 (Div. 2) A-C的更多相关文章

  1. Codeforces Round #789 (Div. 2)

    题集链接 A. Tokitsukaze and All Zero Sequence 题意 Tokitsukaze 有一个长度为 n 的序列 a. 对于每个操作,她选择两个数字 ai 和 aj (i≠j ...

  2. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  3. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  4. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  5. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  6. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  7. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  8. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  9. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

随机推荐

  1. Anaconda下安装Tensorflow、keras问题及解决办法

    这两天一直在跟tensorflow的错误日志作斗争!安装过程中出现各种问题,找资料,采坑,终于装好了,做个小总结! keras需要在TensorFlow之上才能运行,所以需要先安装TensorFlow ...

  2. 想要白嫖ppt?记住这几个网站就够了

    良心ppt,超赞! [PPT]:OfficePlushttps://www.officeplus.cn/Template/Home.shtml稻壳Docerhttps://www.docer.com/ ...

  3. MySQL left join 引发的惨案

    当我用这个进行更改值时,type未控制order表 其他数据被更改 还好备份数据表了(这里就体现了备份的重要性) UPDATE expense_order as a left join ( SELEC ...

  4. 动态SQL常用标签

    动态 SQL 目的:为了摆脱在不同条件拼接 SQL 语句的痛苦 在不同条件在生成不同的SQL语句 本质上仍然是SQL语句,不过是多了逻辑代码去拼接SQL,只要保证SQL的正确性按照格式去排列组合 可以 ...

  5. B+树能存多少数据?

    B+树能存多少数据? 图 MySQL B+树示意图 InnoDB页的大小默认是16KB: 假设一条记录大小为1KB,则一个数据页中可以存16条数据(忽略页中的其他数据结构) 假设主键为int,又指针大 ...

  6. 【hexo博客搭建】本地搭建hexo博客(上)

    前言 本篇文章会从本地(Windows 10)搭建-主题更换-部署阿里云详细步骤,如果在搭建过程中,遇到问题,可以通过博客页脚下的QQ联系我,或者在下面评论留言 一.本地搭建 1.安装前置 1.1安装 ...

  7. MyCat安装和基本配置

    安装包下载 下载地址:http://dl.mycat.org.cn/ 我只这里下的是1.6Linux安装包:http://dl.mycat.org.cn/1.6.7.6/20220419132943/ ...

  8. 超全面!1.5w字总结50个Java经典基础面试题(已根据知识点分类)

    大家好,我是fancy. 在面试中将基础问题回答好就是成功的一半. 我总结了50道经典的Java基础面试题,里面包含面试要回答的知识重点,并且我根据知识类型进行了分类,可以说非常全面了. 小伙伴们点赞 ...

  9. 客户案例-SES S.A.

    SES专门为世界上最偏远的地方提供高性能的移动网络连接.广播.维和人员的实时情报和媒体内容. SES是一个全球性组织,专注于提供高性能的视频和虚拟数据解决方案.今天,SES拥有最大的覆盖范围,有超过7 ...

  10. PCIe引脚PRSNT与热插拔

    热插拔的基本目的是要让PCIe设备按照规定的顺序.原则,从系统中移除或插入到系统中来,并能正常的工作,且不影响系统的正常运行.事实上,PCIe"热插拔"的关键目的就是为前面面所提到 ...