基于python 信用卡评分系统 的数据分析

import pandas as pd
import matplotlib.pyplot as plt #导入图像库
from sklearn.ensemble import RandomForestRegressor
# 用随机森林对缺失值预测填充函数
def set_missing(df):
    # 把已有的数值型特征取出来
    process_df = df.ix[:,[5,0,1,2,3,4,6,7,8,9]]
    # 分成已知该特征和未知该特征两部分
    known = process_df[process_df.MonthlyIncome.notnull()].as_matrix()
    unknown = process_df[process_df.MonthlyIncome.isnull()].as_matrix()
    # X为特征属性值
    X = known[:, 1:]
    # y为结果标签值
    y = known[:, 0]
    # fit到RandomForestRegressor之中
    rfr = RandomForestRegressor(random_state=0, n_estimators=200,max_depth=3,n_jobs=-1)
    rfr.fit(X,y)
    # 用得到的模型进行未知特征值预测
    predicted = rfr.predict(unknown[:, 1:]).round(0)
    print(predicted)
    # 用得到的预测结果填补原缺失数据
    df.loc[(df.MonthlyIncome.isnull()), 'MonthlyIncome'] = predicted
    return df
data = pd.read_csv(r'E:\Python\Source\CreditScore\cs-training.csv')
process_df = data.iloc[:,[5,0,1,2,3,4,6,7,8,9]]
known = process_df[process_df.MonthlyIncome.notnull()].as_matrix()
unknown = process_df[process_df.MonthlyIncome.isnull()].as_matrix()
X = known[:, 1:]
y = known[:, 0]
# fit到RandomForestRegressor之中
rfr = RandomForestRegressor(random_state=0, n_estimators=200,max_depth=3,n_jobs=-1)
rfr.fit(X,y)
# 用得到的模型进行未知特征值预测
predicted = rfr.predict(unknown[:, 1:]).round(0)
print(predicted)
data.loc[(data.MonthlyIncome.isnull()), 'MonthlyIncome'] = predicted
 
 
 
[8311. 1159. 8311. ... 1159. 2554. 2554.]
data=data.dropna()#删除比较少的缺失值
data = data.drop_duplicates()#删除重复项
#异常值处理
#x1 = data["age"]
x2 = data["RevolvingUtilizationOfUnsecuredLines"]
x3 = data["DebtRatio"]
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.boxplot([x2,x3])
ax.set_xticklabels(["RevolvingUtilizationOfUnsecuredLines","DebtRatio"])
 
Out[48]:
[Text(0,0,'RevolvingUtilizationOfUnsecuredLines'), Text(0,0,'DebtRatio')]
 
#异常值处理
data = data[data["age"] > 0]
data = data[data['NumberOfTime30-59DaysPastDueNotWorse'] < 90]#剔除异常值
# 好坏客户的整体分析
data['SeriousDlqin2yrs']=1-data['SeriousDlqin2yrs']
grouped = data["SeriousDlqin2yrs"].groupby(data["SeriousDlqin2yrs"]).count()
print("坏客户占比:{:.2%}".format(grouped[0]/grouped[1]))
print(grouped)
grouped.plot(kind="bar")
坏客户占比:7.16%
SeriousDlqin2yrs
0 9706
1 135648
Name: SeriousDlqin2yrs, dtype: int64
Out[54]:
<matplotlib.axes._subplots.AxesSubplot at 0x126eecc0>
 
 Y = data['SeriousDlqin2yrs']
 

本文通过对kaggle上的Give Me Some Credit数据的挖掘分析,结合信用评分卡的建立原理,从数据的预处理、变量选择、建模分析到创建信用评分,创建了一个简单的信用评分系统。本项目还有许多不足之处,比如分箱应当使用最优分箱或卡方分箱,减少人为分箱的随机性,此外模型采用的是逻辑回归算法,还可以多多尝试其他模型。

 
 
 
 
 
 

基于python 信用卡评分系统 的数据分析的更多相关文章

  1. 基于Python实现的系统SLA可用性统计

    基于Python实现的系统SLA可用性统计 1. 介绍 SLA是Service Level Agreement的英文缩写,也叫服务质量协议.根据SRE Google运维解密一书中的定义: SLA是服务 ...

  2. 数据分析:基于Python的自定义文件格式转换系统

    *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...

  3. 基于Python的信用评分卡模型分析(二)

    上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...

  4. 基于Python的信用评分卡模型分析(一)

    信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为 ...

  5. 基于Python的数据分析(2):字符串编码

    在上一篇文章<基于Python的数据分析(1):配置安装环境>中的第四个步骤中我们在python的启动步骤中强制要求加载sitecustomize.py文件并设置其默认编码为"u ...

  6. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  7. 基于Python的数据分析(1):配置安装环境

    数据分析是一个历史久远的东西,但是直到近代微型计算机的普及,数据分析的价值才得到大家的重视.到了今天,数据分析已经成为企业生产运维的一个核心组成部分. 据我自己做数据分析的经验来看,目前数据分析按照使 ...

  8. 性能测试 基于Python结合InfluxDB及Grafana图表实时监控Android系统和应用进程

    基于Python结合InfluxDB及Grafana图表实时监控Android系统和应用进程   By: 授客 QQ:1033553122     1. 测试环境 2. 实现功能 3. 使用前提 4. ...

  9. 基于 Python 和 Pandas 的数据分析(1)

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...

随机推荐

  1. Mybatis foreach的用法

    本文援引:https://www.cnblogs.com/fnlingnzb-learner/p/10566452.html 在做mybatis的mapper.xml文件的时候,我们时常用到这样的情况 ...

  2. Redis的配置文件redis.conf详解

    Redis的配置文件位于redis的安装目录下,一般不要直接操作出厂设置的配置文件,需要对其进行备份.# Redis的配置文件样例: # Redis configuration file exampl ...

  3. SpringDataJpa打印Sql详情(含参数)

    Spring Data Jpa打印Sql详情(带sql参数) 这里使用的是 log4jdbc,yml配置文件里的数据源配置也要做相应的修改 pom文件引入 <dependency> < ...

  4. 【HDU6662】Acesrc and Travel(树型Dp)

    题目链接 大意 给出一颗树,每个点上有一个权值\(A[i]\),有两个绝顶聪明的人甲和乙. 甲乙两人一起在树上轮流走,不能走之前经过的点.(甲乙时刻在一起) 甲先手,并可以确定起点.甲想要走过的点权之 ...

  5. 生成一个node项目

    生成一个node项目1.创建文件夹2.文件夹中右键->在此处打开命令窗口->文件夹中打开dos3.执行:npm init //一路回车,最后y4.安装插件: C:\www\nodejs\h ...

  6. Kubernetes家族容器小管家Pod在线答疑?

    Kubernetes家族容器小管家Pod在线答疑 不知道学习k8s的小伙伴们有没有跟我一样的疑问? k8s为什么不是直接运行容器,而是让Pod介入? Pod又是什么?为什么在应用容器化如此普遍的情况下 ...

  7. PHP程序员可以这样准备找工作

    你好,是我琉忆.PHP程序员面试笔试图书系列作者. 今天就跟大家聊聊作为一个PHP程序员,每年的跳槽季都应该怎么准备一番. 其实普遍的跳槽季总的就有2个. 分别是新年后的3-4月,还有9-10月份. ...

  8. Solution -「ZJOI 2016」「洛谷 P3352」线段树

    \(\mathcal{Descrtiption}\)   给定 \(\{a_n\}\),现进行 \(m\) 次操作,每次操作随机一个区间 \([l,r]\),令其中元素全部变为区间最大值.对于每个 \ ...

  9. Gerrit的用法及与gitlab的区别

    来到一个新的团队,开发的代码被同事覆盖了.找同事核实,同事却说根本没有看到我的代码.经过一番沟通了解,原来他们的代码没有直接在gitlab上操作,而是先提交到gerrit,然后在提交到git.但是代码 ...

  10. 简单excel饼状图怎么做,bi工具怎么做饼状图

    饼状图是为了在一个整体体现个体所占的比例,比如一块蛋糕每人各分多大份.了解了饼状图的含义,就来学习饼状图怎么做吧. 首先,我们准备excel表格饼状图的初始数据 然后选择excel表格上方的插入,选择 ...