编辑距离(Minimum Edit Distance)
编辑距离(Minimum Edit Distance,MED),也叫 Levenshtein Distance。他的含义是计算字符串a转换为字符串b的最少单字符编辑次数。编辑操作有:插入、删除、替换(都是对a进行的变换)。用lev(i, j) 表示 a的前i个单词和 b的前j个单词的最短编辑距离(即从后往前)。可以分为以下几种情况:
i == 0
或j == 0
- \(lev(i, j) = max(i, j)\)
i,j
不为0, 且 \(a[i] == a[j]\)- \(lev(i, j) = lev(i-1, j-1)\)
i,j
不为0, 且 \(a[i] != a[j]\)- 插入: \(lev(i, j-1)\)
- 删除: \(lev(i-1, j)\)
- 替换: \(lev(i-1, j-1) + 1\)
- 三者取最小
这里的插入是在 a[i]
后方插入,这样,b[j]
已经和 a[i]
后方的元素匹配,所以j前移;删除表示删除当前元素,a[i] 前面的元素顶上来,所以i前移,但是顶上来的元素不一定和j匹配,所以j不动。
C++ 实现
解法就是动态规划:
class Solution {
public:
vector<vector<int>> matrix;
int editDistance(string str1, string str2) {
int len1 = str1.size();
int len2 = str2.size();
matrix = vector<vector<int>>(len1 + 1, vector<int>(len2 + 1, 0));
for (int i = 0; i <= len1; ++i)
matrix[i][0] = i;
for (int j = 1; j <= len2; ++j)
matrix[0][j] = j;
for (int i = 1; i <= len1; ++i) {
for (int j = 1; j <= len2; ++j) {
if (str1[i] == str2[j]) matrix[i][j] = matrix[i - 1][j - 1]; // 最后一个字母相同
else {
int insert = matrix[i][j - 1] + 1; // 插入
int del = matrix[i - 1][j] + 1; // 删除
int replace = matrix[i - 1][j - 1] + 1; // 替换
matrix[i][j] = min(insert, min(del, replace));
}
}
}
return matrix[len1][len2];
}
};
python-Levenshtein 库
pip install python-Levenshtein
import Levenshtein
print(Levenshtein.distance("the","teh"))
单词纠错
前几天看到一个很有意思的代码,通过统计的方式,计算最后可能的单词。w是输入单词,c是可能的正确单词。根据贝叶斯,按照惯例忽略分母。
\]
- \(p(w|c)\) : 计算通过w所有编辑距离为i的所有正确单词(就是c),i越小表示p越大
- \(p(c)\) : 在上面的c中,找出频率最高的单词
import re
from collections import Counter
def words(text): return re.findall(r'\w+', text.lower())
WORDS = Counter(words(open('big.txt').read()))
def P(word, N=sum(WORDS.values())):
# 返回单词的概率
return WORDS[word] / N
def correction(word):
# 找到频率最高的c
return max(candidates(word), key=P)
def candidates(word):
'''
找到候选单词c
'''
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
def known(words):
# 返回 words 和 WORDS的交集. 找出正确单词
return set(w for w in words if w in WORDS)
def edits1(word):
# 编辑距离为1的所有单词
"All edits that are one edit away from `word`."
letters = 'abcdefghijklmnopqrstuvwxyz'
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
inserts = [L + c + R for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)
def edits2(word):
# 编辑距离为2的所有单词
return (e2 for e1 in edits1(word) for e2 in edits1(e1))
在python中 list1 or list2
的含义是:
- 如果list1不为空,那么返回list1
- 如果list1为空,那么返回list2
所以这行代码的意思是:
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
- 如果单词是正确的就直接返回
- 如果但是错的,就返回编辑距离是1的所有正确单词作为候选词
- 如果编辑距离是1的正确单词没有,就返回编辑距离是2的所有正确单词作为候选词
- 如果还是为空,就返回他自己
编辑距离(Minimum Edit Distance)的更多相关文章
- Minimum edit distance(levenshtein distance)(最小编辑距离)初探
最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...
- Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)
Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...
- 字符串编辑距离(Edit Distance)
一.问题描述定义字符串编辑距离(Edit Distance),是俄罗斯科学家 Vladimir Levenshtein 在 1965 年提出的概念,又称 Levenshtein 距离,是指两个字符串之 ...
- stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)
I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...
- 动态规划 求解 Minimum Edit Distance
http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...
- [Swift]LeetCode161. 一次编辑距离 $ One Edit Distance
Given two strings S and T, determine if they are both one edit distance apart. 给定两个字符串S和T,确定它们是否都是是一 ...
- 编辑距离——Edit Distance
编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...
- Min Edit Distance
Min Edit Distance ----两字符串之间的最小距离 PPT原稿参见Stanford:http://www.stanford.edu/class/cs124/lec/med.pdf Ti ...
- LeetCode(72) Edit Distance
题目 Given two words word1 and word2, find the minimum number of steps required to convert word1 to wo ...
随机推荐
- jsp获取下拉框组件的值
jsp获取下拉框组件的值 1.首先,写一个带有下拉框的前台页 1 <%@ page language="java" contentType="text/html; ...
- 用Socket套接字发送和接收文件(中间用数组存取)
创建服务端: public class TcpFileServer { public static void main(String[] args) throws Exception { //1创建S ...
- jbd2的死锁分析
已经运行多年的jbd2,它还是死锁了 背景:这个是在centos7的环境上复现的,内核版本为3.10.0-957.27.2.el7 下面列一下我们是怎么排查并解这个问题的. 一.故障现象 oppo云内 ...
- 7个技巧让你写出干净的 TSX 代码
原文链接:https://dev.to/ruppysuppy/7-tips-for-clean-react-typescript-code-you-must-know-2da2 "干净的代码 ...
- Redis图形化管理工具
一.treeNMS Redis做为现在web应用开发的黄金搭担组合,工作中的项目大量使用了Redis,treeNMS是一款用于JAVA语言开发的Redis管理工具:treeNMS管理工具,直接到htt ...
- Helm安装ingress-nginx-4.0.19
Application version 1.1.3 Chart version 4.0.19 获取chart包 helm fetch ingress-nginx/ingress-nginx --ver ...
- KingbaseES V8R6 vacuum index_cleanup 选项
描述: 由于索引页的复用不像HEAP TABLE的PAGE复用机制那么简单只要有空闲空间就可以插入.索引页的空闲空间被复用,必须是PAGE的边界内的值才允许插入. 因此索引一旦膨胀,很难收缩,常用的方 ...
- bfile 类型数据的存取
KingbaseES 支持 bfile 数据类型.对于bfile ,实际数据是存储在操作系统上,数据库存储的只是指向文件的指针. 具体例子如下: test=# create directory BFI ...
- 《Java基础——抽象与接口》
Java基础--抽象与接口 一.抽象: 规则: 关键字 abstract 修饰的类称为抽象类. 子类通过关键字extends实现继承. 关键字 abstract 修饰的方法称为抽象方法,抽 ...
- IEEE浮点数向偶数舍
CSAPP 向偶数舍入初看上去好像是个相当随意的目标--有什么理由偏向取偶数呢?为什么不始终把位于两个可表示的值中间的值都向上舍入呢?使用这种方法的一个问题就是很容易假想到这样的情景:这种方法舍入 ...