一种可以 高效处理 \(k\) 维空间信息 的数据结构。

在正确使用的情况下,复杂度为 \(O(n^{1-\frac{1}{k}})\).

K-D Tree 的实现

建树

随机一维选择最中间的点为当前子树的根,每个节点维护当前点的坐标,已经整个子树的矩形坐标。

Pink Rabbit 说随机选维度没什么问题。

int rt, ID;
struct node{ int lc, rc, x[K], L[K], R[K]; } t[N];
inline bool cmp(const node &a, const node &b){ return a.x[ID] < b.x[ID]; }
inline void getedge(int x){
lfo(i, 0, K) t[x].L[i] = t[x].R[i] = t[x].x[i];
if(ls(x)) lfo(i, 0, K) Min(t[x].L[i], t[ls(x)].L[i]), Max(t[x].R[i], t[ls(x)].R[i]);
if(rs(x)) lfo(i, 0, K) Min(t[x].L[i], t[rs(x)].L[i]), Max(t[x].R[i], t[rs(x)].R[i]);
}
void build(int &x, int l, int r){
if(l > r) return;
int mid = l + r >> 1; x = mid, ID = rand() % K;
nth_element(t + l, t + mid, t + r + 1, cmp);
build(ls(x), l, mid - 1), build(rs(x), mid + 1, r);
getedge(x);
}

插入/删除

  • 删除比较简单,直接标记为不存在即可,复杂度依然靠谱。
  • 插入比较麻烦,如果可离线的话,最好先建树,否则考虑 \(\sqrt n\) 次插入操作后重构整棵树。

复杂度分析

在递归过程中,判断是否继续是:

  • 相交:继续
  • 包含:打标记,return
  • 相离:return

则复杂度最优 \(O(\log n)\),最劣 \(O(n^{1-\frac{1}{k}})\)。

K-D Tree 的应用

  • 求最近点对的骗分做法。

  • 范围修改/查询问题:矩形覆盖,多维偏序……

[笔记] K-D Tree的更多相关文章

  1. [学习笔记]Dsu On Tree

    [dsu on tree][学习笔记] - Candy? - 博客园 题单: 也称:树上启发式合并 可以解决绝大部分不带修改的离线询问的子树查询问题 流程: 1.重链剖分找重儿子 2.sol:全局用桶 ...

  2. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  3. Leetcode 笔记 101 - Symmetric Tree

    题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...

  4. 学习笔记——k近邻法

    对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...

  5. 决策树学习笔记(Decision Tree)

    什么是决策树? 决策树是一种基本的分类与回归方法.其主要有点事模型具有可得性,分类速度快.学习时,利用训练数据,根据损失函数最小化原则建立决策树模型:预测时,对新数据,利用决策树模型进行分类. 决策树 ...

  6. 【leetcode刷题笔记】Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...

  7. [学习笔记] Uplift Decision Tree With KL Divergence

    Uplift Decision Tree With KL Divergence Intro Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是 ...

  8. 【学习笔记】K-D tree 区域查询时间复杂度简易证明

    查询算法的流程 如果查询与当前结点的区域无交集,直接跳出. 如果查询将当前结点的区域包含,直接跳出并上传答案. 有交集但不包含,继续递归求解. K-D Tree 如何划分区域 可以借助下文图片理解. ...

  9. 「算法笔记」Link-Cut Tree

    一.简介 Link-Cut Tree (简称 LCT) 是一种用来维护动态森林连通性的数据结构,适用于动态树问题. 类比树剖,树剖是通过静态地把一棵树剖成若干条链然后用一种支持区间操作的数据结构维护, ...

  10. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

随机推荐

  1. 面试问题之操作系统:linux线程API

    https://blog.csdn.net/youwotianya/article/details/80933449

  2. 如何获取 topic 主题的列表?

    bin/kafka-topics.sh --list --zookeeper localhost:2181

  3. kafka partiton迁移方法与原理

    在kafka中增加新的节点后,数据是不会自动迁移到新的节点上的,需要我们手动将数据迁移(或者成为打散)到新的节点上 1 迁移方法 kafka为我们提供了用于数据迁移的脚本.我们可以用这些脚本完成数据的 ...

  4. elasticsearch 5.6.7在线安装ik分词,亲测有效

    官网的在线安装命令 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/rele ...

  5. TOP 10 开源的推荐系统简介

      最 近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重 量级的适用于工业系统的 Mahout.Oryx ...

  6. 行内元素的padding和margin是否有效

    行内元素的纵向padding和margin都是不考虑的,这是css规范定义的.inline元素确实可以设置垂直方向的padding和margin值,但是inline元素的margin和padding的 ...

  7. 《每周一点canvas动画》——圆周运动

    接<每周一点canvas动画>--波形运动 圆周运动可以分为两种基本的形式:正圆运动和椭圆运动.在讲解圆周运动之前,必不可少的数学公式即将袭来.so,各位骚年们,请护好自己的膝盖.听不懂没 ...

  8. ES6-11学习笔记--数值的扩展

    二进制 0B      八进制 0O Number.isFinite() , Number.isNaN() Number.parseInt() , Number.parseFloat() Number ...

  9. python去除txt文件空白行

    代码: def delblankline(infile, outfile): infopen = open(infile, 'r', encoding="utf-8") outfo ...

  10. java中如果我老是少捕获什么异常,如何处理?

    马克-to-win:程序又一次在出现问题的情况下,优雅结束了.上例中蓝色部分是多重捕获catch.马克-to-win:观察上面三个例子,结论就是即使你已经捕获了很多异常,但是假如你还是少捕获了什么异常 ...