一种可以 高效处理 \(k\) 维空间信息 的数据结构。

在正确使用的情况下,复杂度为 \(O(n^{1-\frac{1}{k}})\).

K-D Tree 的实现

建树

随机一维选择最中间的点为当前子树的根,每个节点维护当前点的坐标,已经整个子树的矩形坐标。

Pink Rabbit 说随机选维度没什么问题。

int rt, ID;
struct node{ int lc, rc, x[K], L[K], R[K]; } t[N];
inline bool cmp(const node &a, const node &b){ return a.x[ID] < b.x[ID]; }
inline void getedge(int x){
lfo(i, 0, K) t[x].L[i] = t[x].R[i] = t[x].x[i];
if(ls(x)) lfo(i, 0, K) Min(t[x].L[i], t[ls(x)].L[i]), Max(t[x].R[i], t[ls(x)].R[i]);
if(rs(x)) lfo(i, 0, K) Min(t[x].L[i], t[rs(x)].L[i]), Max(t[x].R[i], t[rs(x)].R[i]);
}
void build(int &x, int l, int r){
if(l > r) return;
int mid = l + r >> 1; x = mid, ID = rand() % K;
nth_element(t + l, t + mid, t + r + 1, cmp);
build(ls(x), l, mid - 1), build(rs(x), mid + 1, r);
getedge(x);
}

插入/删除

  • 删除比较简单,直接标记为不存在即可,复杂度依然靠谱。
  • 插入比较麻烦,如果可离线的话,最好先建树,否则考虑 \(\sqrt n\) 次插入操作后重构整棵树。

复杂度分析

在递归过程中,判断是否继续是:

  • 相交:继续
  • 包含:打标记,return
  • 相离:return

则复杂度最优 \(O(\log n)\),最劣 \(O(n^{1-\frac{1}{k}})\)。

K-D Tree 的应用

  • 求最近点对的骗分做法。

  • 范围修改/查询问题:矩形覆盖,多维偏序……

[笔记] K-D Tree的更多相关文章

  1. [学习笔记]Dsu On Tree

    [dsu on tree][学习笔记] - Candy? - 博客园 题单: 也称:树上启发式合并 可以解决绝大部分不带修改的离线询问的子树查询问题 流程: 1.重链剖分找重儿子 2.sol:全局用桶 ...

  2. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  3. Leetcode 笔记 101 - Symmetric Tree

    题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...

  4. 学习笔记——k近邻法

    对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...

  5. 决策树学习笔记(Decision Tree)

    什么是决策树? 决策树是一种基本的分类与回归方法.其主要有点事模型具有可得性,分类速度快.学习时,利用训练数据,根据损失函数最小化原则建立决策树模型:预测时,对新数据,利用决策树模型进行分类. 决策树 ...

  6. 【leetcode刷题笔记】Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...

  7. [学习笔记] Uplift Decision Tree With KL Divergence

    Uplift Decision Tree With KL Divergence Intro Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是 ...

  8. 【学习笔记】K-D tree 区域查询时间复杂度简易证明

    查询算法的流程 如果查询与当前结点的区域无交集,直接跳出. 如果查询将当前结点的区域包含,直接跳出并上传答案. 有交集但不包含,继续递归求解. K-D Tree 如何划分区域 可以借助下文图片理解. ...

  9. 「算法笔记」Link-Cut Tree

    一.简介 Link-Cut Tree (简称 LCT) 是一种用来维护动态森林连通性的数据结构,适用于动态树问题. 类比树剖,树剖是通过静态地把一棵树剖成若干条链然后用一种支持区间操作的数据结构维护, ...

  10. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

随机推荐

  1. 为什么需要消息系统,mysql 不能满足需求吗?

    1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据 丢失风险.许多消息队列所采用的& ...

  2. Servlet之间的关联

  3. 创建Maven web工程

    ---恢复内容开始--- 第一步,启动Eclipse,依次打开菜单[File][New][Other] 找到目录Maven,选择Maven Project, 选择一个Archetype.这里创建Web ...

  4. 初识mybatis(为什么是mybatis?)

    对原生态的 jdbc 中的问题总结 1.数据库连接,使用就创建,不使用立即释放,对数据库进行频繁连接开启和关闭,造成数据库资源浪费,影响数据库性能. 设想:使用数据库连接池管理数据库连接 2.将sql ...

  5. pygame.error: video system not initialized

    在pygame写游戏出现pygame.error: video system not initialized 源代码 import sysimport pygamedef run_game(): py ...

  6. Netty学习摘记 —— 心跳机制 / 基于分隔符和长度的协议

    本文参考 本篇文章是对<Netty In Action>一书第十一章"预置的ChannelHandler和编解码器"的学习摘记,主要内容为通过 SSL/TLS 保护 N ...

  7. 基于MPC算法的车辆多目标自适应巡航控制系统研究_荆亚杰

  8. 单页应用SPA开发最佳实践

    最近用vue+vue-router做了个单页应用的项目,页面大概有15个左右.积累了一些开发经验在此做一些记录.本文主要从可维护性方面来考虑SPA的开发实践 全站的颜色定义放在一个less或者scss ...

  9. 用JS写一个计算器(兼容手机端)

    先看成果:1.PC端2. 首先确立html,有哪些东西我们要知道.布局大概的样子在心里有个数 <!DOCTYPE html> <html> <head> <m ...

  10. HTML5 localStorage使用方法及注意点

    html5新增了在客户端存储数据的新方法:1.localStorage - 没有时间限制的数据存储:2.sessionStorage - 针对一个session的数据存储,当用户关闭浏览器窗口后,数据 ...