摘要:本案例将在ModelBox中使用YOLO v3模型,实现一个简单的口罩检测应用

本文分享自华为云社区《ModelBox开发体验Day05开发案例-使用YOLOv3做口罩检测》,作者: 孙小北。

  • 本案例将使用YOLO v3模型,实现一个简单的口罩检测应用
  • 代码:https://github.com/sunxiaobei/modelbox_gallery
  • 代码tag:v1.5 mask_det_yolo3,v1.5.1 mask_det_yolo3_camera

开发准备

  • 开发环境安装和部署,前面环境已完成
  • 模型训练,ModelArts训练模型
  • 模型转换,代码模型已完成转换

应用开发

打开VS Code,连接到ModelBox sdk所在目录或者远程开发板,开始进行口罩检测应用开发。

(1)创建工程

使用create.py创建mask_det_yolo3工程, 将会创建出一个空的ModelBox样例工程。

./create.py -t server -n mask_det_yolo3
git add .
git commit -m 'create mask_det_yolo3'

(2)创建推理功能单元

AI应用的核心是模型推理部分,我们用如下命令创建推理功能单元,该模块将会创建在工程目录的model文件夹下:

./create.py -t infer -n mask_infer -p mask_det_yolo3
git add .
git commit -m 'create mask_infer'

将资源包中model/mask_infer文件夹中的模型和配置文件拷贝到口罩检测工程的model/mask_infer目录下。其中yolo3_resnet18_mask_det_288x512-rknpu2.rknn是转换好的rknn模型,mask_infer.toml是该模型的ModelBox功能单元配置文件,其内容如下:

# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
[base]
name = "mask_infer"
device = "rknpu"
version = "1.0.0"
description = "your description"
entry = "./yolo3_resnet18_mask_det_288x512-rknpu2.rknn" # model file path, use relative path
type = "inference"
virtual_type = "rknpu2" # inference engine type: rockchip now support rknpu, rknpu2(if exist)
group_type = "Inference" # flowunit group attribution, do not change
is_input_contiguous = "false" # rk do not support memory combine, fix, do not change
[input]
[input.input1]
name = "data"
type = "uint8"
device = "rknpu"
[output]
[output.output1]
name = "yolo/output1"
type = "float"
[output.output2]
name = "yolo/output2"
type = "float"
[output.output3]
name = "yolo/output3"
type = "float"

可以看到该模型有3个输出节点,即YOLO v3模型输出的3个feature map,需要从中解码出检测框。

(3)创建后处理功能单元

后处理功能单元负责从模型推理结果中解码出检测框,我们用如下命令创建该功能单元,其将会创建在工程目录的etc/flowunit文件夹下:

./create.py -t python -n yolo3_post -p mask_det_yolo3

将common资源包中etc/flowunit/yolo3_post文件夹中的代码和配置文件拷贝到口罩检测工程的同名目录下,解码过程的核心逻辑在yolo3_utils.py文件中,可以查阅YOLO v3模型细节阅读代码。

(4)创建画图功能单元

得到检测框后可以画在原图上进行输出展示,我们用如下命令创建画图功能单元:

./create.py -t python -n draw_mask_bbox -p mask_det_yolo3

将common资源包中etc/flowunit/draw_mask_bbox文件夹中的代码和配置文件拷贝到口罩检测工程的同名目录下,画图的核心逻辑在draw_mask_bbox.py文件的draw_mask_info函数中:

def draw_mask_info(self, image, bboxes):
'''在图中画出口罩佩戴信息'''
thickness = 2
font_scale = 1
text_font = cv2.FONT_HERSHEY_SIMPLEX
for bbox in bboxes:
label_index = int(bbox[5])
if self.labels[label_index] != 'head':
continue
x_min, y_min, x_max, y_max = bbox[0], bbox[1], bbox[2], bbox[3]
face_bbox = self.find_max_cover_bbox(
bbox, bboxes, 'face', self.face_cover_ratio)
if not face_bbox:
cv2.rectangle(image, (x_min, y_min),
(x_max, y_max), (255, 255, 0), thickness)
cv2.putText(image, 'unknown', (x_min, y_min-20),
text_font, font_scale, (255, 255, 0), thickness)
continue
mask_bbox = self.find_max_cover_bbox(
face_bbox, bboxes, 'mask', self.mask_cover_ratio)
if not mask_bbox:
cv2.putText(image, 'no mask', (x_min, y_min-20),
text_font, font_scale, (255, 0, 0), thickness)
cv2.rectangle(image, (x_min, y_min),
(x_max, y_max), (255, 0, 0), thickness)
else:
cv2.putText(image, 'has mask', (x_min, y_min-20),
text_font, font_scale, (0, 255, 0), thickness)
cv2.rectangle(image, (x_min, y_min),
(x_max, y_max), (0, 255, 0), thickness)
cv2.rectangle(image, (mask_bbox[0], mask_bbox[1]),
(mask_bbox[2], mask_bbox[3]), (0, 255, 255), thickness)
return image

针对每个人,该模型会尝试检测出head(头肩部)、face和mask三个检测框。如果face检测框与mask检测框的重合度大于某个阈值,就判为佩戴口罩;否则,就判为没有佩戴口罩;如果没有检测到face检测框,就会显示Unknown,表示未知。

(5)修改流程图

模型推理和配套的功能单元准备好后,我们就可以串联出流程图进行测试了,口罩检测工程默认在graph目录下生成了mask_det_yolo3.toml,我们参考资源包中的graph/mask_det_yolo3.toml将其修改为:

# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
[driver]
dir = ["${HILENS_APP_ROOT}/etc/flowunit",
"${HILENS_APP_ROOT}/etc/flowunit/cpp",
"${HILENS_APP_ROOT}/model",
"${HILENS_MB_SDK_PATH}/flowunit"]
skip-default = true
[profile]
profile=false
trace=false
dir=""
[graph]
format = "graphviz"
graphconf = """digraph mask_det_yolo3 {
node [shape=Mrecord];
queue_size = 4
batch_size = 1
input1[type=input,flowunit=input,device=cpu,deviceid=0]
data_source_parser[type=flowunit, flowunit=data_source_parser, device=cpu, deviceid=0]
video_demuxer[type=flowunit, flowunit=video_demuxer, device=cpu, deviceid=0]
video_decoder[type=flowunit, flowunit=video_decoder, device=rknpu, deviceid=0, pix_fmt=bgr]
image_resize[type=flowunit, flowunit=resize, device=rknpu, deviceid=0, width=512, height=288]
mask_detection[type=flowunit, flowunit=mask_infer, device=rknpu, deviceid=0]
yolo3_post[type=flowunit, flowunit=yolo3_post, device=cpu, deviceid=0]
draw_mask_bbox[type=flowunit, flowunit=draw_mask_bbox, device=cpu, deviceid=0]
video_out[type=flowunit, flowunit=video_out, device=rknpu, deviceid=0]
input1:input -> data_source_parser:in_data
data_source_parser:out_video_url -> video_demuxer:in_video_url
video_demuxer:out_video_packet -> video_decoder:in_video_packet
video_decoder:out_video_frame -> image_resize:in_image
image_resize:out_image -> mask_detection:data
mask_detection:"yolo/output1" -> yolo3_post:in_feat1
mask_detection:"yolo/output2" -> yolo3_post:in_feat2
mask_detection:"yolo/output3" -> yolo3_post:in_feat3
video_decoder:out_video_frame -> draw_mask_bbox:in_image
yolo3_post:out_data -> draw_mask_bbox:in_bbox
draw_mask_bbox:out_image -> video_out:in_video_frame
}"""
[flow]
desc = "mask_det_yolo3 run in modelbox-rk-aarch64"

该流程图对于某个视频流,经过视频解码、图像缩放、口罩检测推理、检测框后处理、画图等一系列操作后,将结果保存下来。

然后,参考common资源包中mock_task.toml,将口罩检测工程的任务配置文件bin/mock_task.toml中输入输出部分修改为:

# 任务输入,mock模拟目前仅支持一路rtsp或者本地url
# rtsp摄像头,type = "rtsp", url里面写入rtsp地址
# 其它用"url",比如可以是本地文件地址, 或者httpserver的地址,(摄像头 url = "0")
[input]
type = "url"
url = "../data/mask_test.mp4"
# 任务输出,目前仅支持"webhook", 和本地输出"local"(输出到屏幕,url="0", 输出到rtsp,填写rtsp地址)
# (local 还可以输出到本地文件,这个时候注意,文件可以是相对路径,是相对这个mock_task.toml文件本身)
[output]
type = "local"
url = "../hilens_data_dir/mask_test_result.mp4"

将common资源包中的data/mask_test.mp4测试视频拷贝到口罩检测工程的data目录下,该流程图使用这一视频进行口罩检测,检测结果绘制后保存为hilens_data_dir/mask_test_result.mp4文件。

(6)运行应用

在mask_det_yolo3工程路径下执行build_project.sh进行工程构建:

cd workspace/mask_det_yolo3
./build_project.sh

执行bin/main.sh运行应用(如果运行报错请切换到root账号再运行,本应用需要事先使用pip安装好OpenCV和NumPy),运行结束后在hilens_data_dir目录下生成了mask_test_result.mp4文件,可以下载到PC端查看。

bin/main.sh
git add .
git commit -m 'run mask_det_yolo3'
git push
git tag -a v1.5 -m 'mask_det_yolo3'
git push origin --tags

(7)实时摄像头

# 用于本地mock文件读取任务,脚本中已经配置了IVA_SVC_CONFIG环境变量, 添加了此文件路径
########### 请确定使用linux的路径类型,比如在windows上要用 D:/xxx/xxx 不能用D:\xxx\xxx ###########
# 任务的参数为一个压缩并转义后的json字符串
# 直接写需要转义双引号, 也可以用 content_file 添加一个json文件,如果content和content_file都存在content会被覆盖
# content_file支持绝对路径或者相对路径,不支持解析环境变量(包括${HILENS_APP_ROOT}、${HILENS_DATA_DIR}等)
[common]
content = "{\"param_str\":\"string param\",\"param_int\":10,\"param_float\":10.5}"
# 任务输入,mock模拟目前仅支持一路rtsp或者本地url
# rtsp摄像头,type = "rtsp", url里面写入rtsp地址
# 其它用"url",比如可以是本地文件地址, 或者httpserver的地址,(摄像头 url = "0")
[input]
type = "url"
# url = "../data/mask_test.mp4"
url = "0"
# 任务输出,目前仅支持"webhook", 和本地输出"local"(输出到屏幕,url="0", 输出到rtsp,填写rtsp地址)
# (local 还可以输出到本地文件,这个时候注意,文件可以是相对路径,是相对这个mock_task.toml文件本身)
[output]
type = "local"
# url = "../hilens_data_dir/mask_test_result.mp4"
url = "rtsp://192.168.3.3:8554/outstream"

运行测试

bin/main.sh camera

小结

本次案例实践口罩识别,通过本次案例的实践对于开发板的使用有了进一步了解,同时也体会到了这个开发板的便捷开发模式,非常值得推荐,希望后续可以体验更多案例,真正落地实践。

参考文献:

点击关注,第一时间了解华为云新鲜技术~

ModelBox开发体验:使用YOLOv3做口罩检测的更多相关文章

  1. 使用新一代js模板引擎NornJ提升React.js开发体验

    当前的前端世界中有很多著名的开源javascript模板引擎如Handlebars.Nunjucks.EJS等等,相信很多人对它们都并不陌生. js模板引擎的现状 通常来讲,这些js模板引擎项目都有一 ...

  2. dotnet core开发体验之开始MVC

    开始 在上一篇文章:dotnet core多平台开发体验 ,体验了一把dotnet core 之后,现在想对之前做的例子进行改造,想看看加上mvc框架是一种什么样的体验,于是我就要开始诞生今天的这篇文 ...

  3. NET Core全新的开发体验

    NET Core全新的开发体验 2016年6月27日,这是一个特殊的日子,微软全新的.NET开发平台.NET Core的RTM版本正式发布.我个人将.NET Core的核心特性归结为三点,它们的首字母 ...

  4. .NET Core多平台开发体验[1]: Windows

    微软在千禧年推出 .NET战略,并在两年后推出第一个版本的.NET Framework和IDE(Visual Studio.NET 2002,后来改名为Visual Studio),如果你是一个资深的 ...

  5. .NET Core多平台开发体验[2]: Mac OS X

    除了微软自家的Windows平台, .NET Core针对Mac OS以及各种Linux(RHEL.Ubuntu.Debian.Fedora.CentOS和SUSE等)都提供了很好的支持,我们先来体验 ...

  6. Microsoft Graph Web应用程序极致开发体验

    作者:陈希章 重写于 2017年5月24日 前言 这篇文章最早写于2017年5月2日,当时的想法是从最简单的方式来写如何在一个ASP.NET MVC应用程序中集成Microsoft Graph,但实际 ...

  7. .NET Core多平台开发体验[3]: Linux (Windows Linux子系统)

    如果想体验Linux环境下开发和运行.NET Core应用,我们有多种选择.一种就是在一台物理机上安装原生的Linux,我们可以根据自身的喜好选择某种Linux Distribution,目前来说像R ...

  8. (转)如何用TensorLayer做目标检测的数据增强

    数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只 ...

  9. 从YOLOv1到YOLOv3,目标检测的进化之路

    https://blog.csdn.net/guleileo/article/details/80581858 本文来自 CSDN 网站,作者 EasonApp. 作者专栏: http://dwz.c ...

随机推荐

  1. 『忘了再学』Shell基础 — 25、扩展正则表达式

    目录 1.扩展正则表达式说明 2.练习 (1)+和?练习 (2)|和()练习 3.注意(重点) 1.扩展正则表达式说明 熟悉正则表达式的童鞋应该很疑惑,在其他的语言中是没有扩展正则表达式说法的,在Sh ...

  2. GraphX 图计算实践之模式匹配抽取特定子图

    本文首发于 Nebula Graph Community 公众号 前言 Nebula Graph 本身提供了高性能的 OLTP 查询可以较好地实现各种实时的查询场景,同时它也提供了基于 Spark G ...

  3. c++ 快速乘

    First 在一些数学题中,两个数相乘运算很多,同时又很容易溢出,如两个 long long 相乘 今天本蒟蒻来总结一下快速乘的两种方法 1:二进制 和快速幂的原理一样,优化一个一个加的算法,复杂度\ ...

  4. ruoyi接口权限校验

    此文章属于ruoyi项目实战系列 ruoyi系统在前端主要通过权限字符包含与否来动态显示目录和按钮.为了防止通过http请求绕过权限限制,后端接口也需要进行相关权限设计. @PreAuthorize使 ...

  5. 使用node.js如何简单快速的搭建一个websocket聊天应用

    初始化项目 npm init 安装nodejs-websocket npm install nodejs-websocket 创建并编辑启动文件 创建一个名为app.js文件,并且编辑它. var w ...

  6. 第一章:Python的数据结构、函数和文件

    list list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: >>> classmates = ['Michael', ...

  7. Django WEB开发 - Django 3.0 Tutorial入门

    1. Django 官方网站 https://docs.djangoproject.com/zh-hans/3.0/intro/tutorial01/ 2. Model View Controller ...

  8. javascript基本属性访问对象的属性和方法

    var myName = "Shelley"; //字符串基本类型 alert(myName.length);  //隐式创建String对象,数值与myName相同,并执行len ...

  9. Linux快捷方式创建模板

    1.创建快捷方式文件 sudo gedit /usr/share/applications/Navicat.desktop 模板: [Desktop Entry] Name=Navicat Exec= ...

  10. java.security.spec.InvalidKeySpecException: java.security.InvalidKeyException: IOException : DerInputStream.getLength(): lengthTag=111, too big.

    RSA用私钥签名的时候发现报错,删除以下内容即可 -----BEGIN PRIVATE KEY----- -----END PRIVATE KEY----- import org.apache.com ...