题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5212

题意:

给定序列,1≤i,j≤n,求gcd(a[i],a[j])∗(gcd(a[i],a[j])−1)之和。

分析:

同样我们设

f(d):满足gcd(x,y)=d且x,y均在给定范围内的(x,y)的对数。

F(d):满足d|gcd(x,y)且x,y均在给定范围内的(x,y)的对数。

反演后我们得到

f(x)=∑x|dμ(d/x)∗F(d)

由于序列给定,这里的F(d)我们可以通过枚举d,来找d的倍数的个数,那么F(d)=cnt[d]∗cnt[d],枚举最大公约数求出f(d),那么答案即为f(d)∗d∗(d−1)的和。时间复杂度O(nlogn)。

代码:

/*
-- Hdu 5212
-- mobius
-- Create by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 1e4+ 5 , mod = 1e4 + 7;
int tot = 0;
int miu[maxn], prime[maxn], a[maxn];
int cnt[maxn], F[maxn];
bool flag[maxn];
void mobius()
{
miu[1] = 1;
tot = 0;
for(int i = 2; i < maxn; i++){
if(!flag[i]){
prime[tot++] = i;
miu[i] = -1;
cnt[i] = 1;
}
for(int j = 0; j < tot && i * prime[j] < maxn; j++){
flag[i * prime[j]] = true;
cnt[i * prime[j]] = cnt[i] + 1;
if(i % prime[j]){
miu[i * prime[j]] = -miu[i];
}
else{
miu[i * prime[j]] = 0;
break;
}
}
}
}
int main (void)
{
mobius();
int n;
while(~sa(n)){
int maxa = 0;
memset(cnt, 0, sizeof(cnt));
memset(F, 0, sizeof(F));
for(int i = 0; i < n; i++) {
sa(a[i]);
cnt[a[i]]++;
maxa = max(maxa, a[i]);
}
for(int i = 1; i <= maxa; i++){
for(int j = i; j <= maxa; j += i){
F[i] += cnt[j];
}
}
ll ans = 0;
ll tmp = 0;
for(int i = 1; i <= maxa; i++){
tmp = 0;
for(int j = i; j <= maxa; j += i){
tmp += miu[j/ i] * F[j] * 1ll * F[j] % mod;
}
ans =( ans + tmp * 1ll * i % mod * (i - 1)% mod) % mod;
}
printf("%I64d\n", ans);
}
return 0;
}

HDU 5212 Code【莫比乌斯反演】的更多相关文章

  1. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  2. HDU 5212 Code (莫比乌斯反演)

    题意:给定上一个数组,求 析: 其中,f(d)表示的是gcd==d的个数,然后用莫比乌斯反演即可求得,len[i]表示能整队 i 的个数,可以线性筛选得到, 代码如下: #pragma comment ...

  3. POJ3094 Sky Code(莫比乌斯反演)

    POJ3094 Sky Code(莫比乌斯反演) Sky Code 题意 给你\(n\le 10^5\)个数,这些数\(\le 10^5\),问这些这些数组成的互不相同的无序四元组(a,b,c,d)使 ...

  4. HDU 4746 Mophues (莫比乌斯反演应用)

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  5. [HDU 5608]Function(莫比乌斯反演 + 杜教筛)

    题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣N​f(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1N​f ...

  6. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  7. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

  8. POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数

    http://poj.org/problem?id=3904   题意:给一些数,求在这些数中找出四个数互质的方案数.   莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...

  9. Mophues HDU - 4746 (莫比乌斯反演)

    Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...

随机推荐

  1. redis的字符串操作以及在django中的使用

    redis ----redis.MongoDB : 非关系型数据库 redis   存储在内存中 MongoDB 存储在硬盘中 l  简介 redis是一个key-value存储系统 , 支持持久化 ...

  2. python中打印金字塔和九九乘法表的几种方法

    # 打印九九乘法表for i in range(1,10): for j in range(1,i+1): # x=i*j # print(i,'*',j,'=',x,end=' ') print(' ...

  3. visual studio 2019安装秘钥

    美国时间4.2微软发布了最新版本的visual studio 2019 现在贴出visual studio2019的秘钥,有需要的请自取: Visual Studio 2019 Enterprise( ...

  4. 装饰器与lambda

    装饰器 实际上理解装饰器的作用很简单,在看core python相关章节的时候大概就是这种感觉.只是在实际应用的时候,发现自己很难靠直觉决定如何使用装饰器,特别是带参数的装饰器,于是摊开来思考了一番, ...

  5. 网页静态化解决方案Freemarker

    序言: 沉淀了三个月,逐步将自己最近两年在公司中用到的技术和知识点,重新整理归纳了下,对比以前可以发现,现在技术更新越来越快,也越来越成熟,在互联网企业,用到的技术也更先进,更领先,比如微服务.分布式 ...

  6. JavaScript: 2015 年回顾与展望

    链接:http://www.sitepoint.com/javascript-2015-review/ JavaScript经历了一个不平凡的一年.尽管到5月份已经20年了,关于JS的新闻.项目和兴趣 ...

  7. Zend Framework 2中如何使用Service Manager

    end Framework 2 使用ServiceManager(简称SM)来实现控制反转(IoC).有很多资料介绍了service managers的背景,我推荐大家看看this blog post ...

  8. python学习-- 在for循环中还有很多有用的东西,如下:

    变量 描述 forloop.counter 索引从 1 开始算 forloop.counter0 索引从 0 开始算 forloop.revcounter 索引从最大长度到 1 forloop.rev ...

  9. TOJ4168: Same Digits

    4168: Same Digits  Time Limit(Common/Java):1000MS/3000MS     Memory Limit:65536KByteTotal Submit: 11 ...

  10. Mysql读写分离实例

    吐槽:前天刚加完MQ,这回加读写分离.我也是醉了,但是弄完之后,就发现,似乎没我想的那么复杂,真的!另外,昨天试了一下用swagger编写API文档,太方便了,加上Mock service测试.这两天 ...