HDU 5212 Code【莫比乌斯反演】
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5212
题意:
给定序列,1≤i,j≤n,求gcd(a[i],a[j])∗(gcd(a[i],a[j])−1)之和。
分析:
同样我们设
f(d):满足gcd(x,y)=d且x,y均在给定范围内的(x,y)的对数。
F(d):满足d|gcd(x,y)且x,y均在给定范围内的(x,y)的对数。
反演后我们得到
由于序列给定,这里的F(d)我们可以通过枚举d,来找d的倍数的个数,那么F(d)=cnt[d]∗cnt[d],枚举最大公约数求出f(d),那么答案即为f(d)∗d∗(d−1)的和。时间复杂度O(nlogn)。
代码:
/*
-- Hdu 5212
-- mobius
-- Create by jiangyuzhu
-- 2016/5/30
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
#define sa(n) scanf("%d", &(n))
#define sal(n) scanf("%I64d", &(n))
#define pl(x) cout << #x << " " << x << endl
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 1e4+ 5 , mod = 1e4 + 7;
int tot = 0;
int miu[maxn], prime[maxn], a[maxn];
int cnt[maxn], F[maxn];
bool flag[maxn];
void mobius()
{
miu[1] = 1;
tot = 0;
for(int i = 2; i < maxn; i++){
if(!flag[i]){
prime[tot++] = i;
miu[i] = -1;
cnt[i] = 1;
}
for(int j = 0; j < tot && i * prime[j] < maxn; j++){
flag[i * prime[j]] = true;
cnt[i * prime[j]] = cnt[i] + 1;
if(i % prime[j]){
miu[i * prime[j]] = -miu[i];
}
else{
miu[i * prime[j]] = 0;
break;
}
}
}
}
int main (void)
{
mobius();
int n;
while(~sa(n)){
int maxa = 0;
memset(cnt, 0, sizeof(cnt));
memset(F, 0, sizeof(F));
for(int i = 0; i < n; i++) {
sa(a[i]);
cnt[a[i]]++;
maxa = max(maxa, a[i]);
}
for(int i = 1; i <= maxa; i++){
for(int j = i; j <= maxa; j += i){
F[i] += cnt[j];
}
}
ll ans = 0;
ll tmp = 0;
for(int i = 1; i <= maxa; i++){
tmp = 0;
for(int j = i; j <= maxa; j += i){
tmp += miu[j/ i] * F[j] * 1ll * F[j] % mod;
}
ans =( ans + tmp * 1ll * i % mod * (i - 1)% mod) % mod;
}
printf("%I64d\n", ans);
}
return 0;
}
HDU 5212 Code【莫比乌斯反演】的更多相关文章
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- HDU 5212 Code (莫比乌斯反演)
题意:给定上一个数组,求 析: 其中,f(d)表示的是gcd==d的个数,然后用莫比乌斯反演即可求得,len[i]表示能整队 i 的个数,可以线性筛选得到, 代码如下: #pragma comment ...
- POJ3094 Sky Code(莫比乌斯反演)
POJ3094 Sky Code(莫比乌斯反演) Sky Code 题意 给你\(n\le 10^5\)个数,这些数\(\le 10^5\),问这些这些数组成的互不相同的无序四元组(a,b,c,d)使 ...
- HDU 4746 Mophues (莫比乌斯反演应用)
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
http://poj.org/problem?id=3904 题意:给一些数,求在这些数中找出四个数互质的方案数. 莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...
- Mophues HDU - 4746 (莫比乌斯反演)
Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...
随机推荐
- LeetCode(189) Rotate Array
题目 Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = 3, the arr ...
- 【HIHOCODER 1142】 三分·三分求极值
描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物 ...
- HDU - 4027 Can you answer these queries?(线段树)
给定一个长度为n的序列,m次操作. 每次操作 可以将一个区间内的所有数字变为它的根号. 可以查询一个区间内所有元素的和. 线段树的初级应用. 如果把一个区间内的元素都改为它的根号的话,是需要每个数字都 ...
- POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)
传送门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K ...
- zoj 4057
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> ...
- x mod a=r(N对a,r)
//模数不一定互质,互质才可以用孙子定理. /* https://blog.csdn.net/zmh964685331/article/details/50527894 uu遇到了一个小问题,可是他不 ...
- poj 1321 排兵布阵问题 dfs算法
题意:有不规则地图,在上面放n个相同的棋子,要求摆放的时候不同行不同列.问:有多少种摆法? 思路:dfs+回溯 用一个book[]数组来表示当前列是否有放棋子 一行一行的遍历,对一行来说遍历它的列,如 ...
- python单例模式的几种实现方法
单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...
- Leetcode12--->Integer to Roman(整数转换为罗马数字)
题目: 给定一个整数,将其转换为罗马数字; 题目很简单,主要是依靠整数和罗马数字的对应表: I= 1:V= 5: X = 10: L = 50: C = 100: D = 500: M = 1000 ...
- Ext.js二级联动
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <link href ...