bitboard
Discription
    天才发明家小K 制造了一块比特板。板子上有2^n个比特元,编号为0 ∼ 2^n−
1。每个比特元

某考试 T3 bitboard的更多相关文章

  1. 2018-8-10考试 T3. 朝暮(akekure)

    题目大意:有$n$个点和$m$条边的图($n - 1 \leq m \leq n + 5$),每个点要么黑要么白,两个黑点不可以相邻,问方案数 题解:可以发现当图为一棵树的时候只需要一个树形$DP$ ...

  2. 考试T3麻将

    这题就是一个简单的暴力,但考试的时候不知道脑子在想什么,什么都没打出来,也许是我想的太多了... 这道题对于不会打麻将的人来说还是有点难理解规则的,我没说过我会打麻将,这里是题目链接. 20分思路,利 ...

  3. 2019.2.25考试T3, 离线+线段树

    \(\color{#0066ff}{题解}\) #include<bits/stdc++.h> #define LL long long LL in() { char ch; LL x = ...

  4. 2019.2.14 考试T3 交互题

    \(\color{#0066ff}{ 题目描述 }\) 由于机房被成功拯救了,花_Q很高兴,花_Q生成了一个 0 到 N - 1 的排列(排列的下标从 0 到 N - 1 ).保证排列中 0 在 N ...

  5. 某考试 T3 C

    找不着原题了. 原题大概就是给你一条直线上n个点需要被覆盖的最小次数和m条需要花费1的线段的左右端点和1条[1,n]的每次花费为t的大线段. 问最小花费使得所有点的覆盖数都达到最小覆盖数. 感觉这个函 ...

  6. 某考试 T3 Try to find out the wrong in the test

    Discription Hint: 对于 100% 的数据, n<=10^6.

  7. 某考试 T3 sine

    推完一波式子之后发现是个矩阵23333. 其实只要发现是矩阵之后就是个水题了. #include<bits/stdc++.h> #define ll long long using nam ...

  8. 16.1113 模拟考试T3

    城堡[问题描述]给定一张N个点M条边的无向连通图,每条边有边权.我们需要从M条边中选出N − 1条, 构成一棵树. 记原图中从 1 号点到每个节点的最短路径长度为?Di ,树中从 1 号点到每个节点的 ...

  9. 题解【2.23考试T3】val

    3. val[题目描述] 这是一道传统题,源代码的文件名为 val.cpp/c/pas. 有一个值初始为 0,接下来 n 次你可以令其在之前基础上+2 或+1 或-1.你需要保证,这个值在整个过程中达 ...

随机推荐

  1. java/jsp执行sql语句的方式

    首先给出sql驱动包 引入sql包 import java.sql.*;//java <%@ page import="java.sql.*"%>//jsp 连接mys ...

  2. Altium Designer入门学习笔记1.软件安装与资料收集

    一.软件安装 微信:http://url.cn/5Eudzt9 关注微信公众号"软件安装管家",点击"软件目录",弹出"软件目录",点击进入 ...

  3. for_each_node(node)

    遍历各个pg_data_t节点. 1.定义在include/linux/nodemask.h中 /* * Bitmasks that are kept for all the nodes. */ en ...

  4. 蓝桥--2n皇后问题(递归)--搬运+整理+注释

    N皇后问题: #include <iostream> #include <cmath> using namespace std; int N; ];//用来存放算好的皇后位置. ...

  5. HDU 4348 To the moon 主席树

    题意: 给出一个长度为\(n(n \leq 10^5)\)的序列,最开始时间\(t=0\),支持下面几个操作: \(C \, l \, r \, d\):将区间\([l,r]\)每个数都加上\(d\) ...

  6. Android 资源文件local.properties使用以及Gradle文件中的值、Manifests文件中的值

    这篇也是因为Gradle存储密钥问题一路填坑总结的,期初连.properties创建都有疑问 因为当时是在Android下查看新建的properties一直没法看到 因为Gradle Scripts是 ...

  7. Install Oracle 11G Release 2 (11.2) on Oracle Linux 7 (OEL7)

    Install Oracle 11G Release 2 (11.2) on Oracle Linux 7 (OEL7) This article presents how to install Or ...

  8. mongodb系统出错。 发生系统错误 1067。 进程意外终止。

    MongoDB安装目录\data\将此文件夹下的mongod.lock删除 mongod.exe --config E:\ruanjian\MongoDB\mongod.cfg --remove mo ...

  9. EM算法简易推导

    EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但 ...

  10. linux各种版本查看方法

    1.linux内核版本 cat /proc/version Linux version 4.13.0-39-generic (buildd@lgw01-amd64-038) (gcc version ...