Codeforces 401D Roman and Numbers
题目大意
Description
给定一个数 N(N<1018) , 求有多少个经过 N 重组的数是 M(M≤100) 的倍数.
注意: ①重组不能有前导零; ②重组的数相同, 则只能算一个数.
Input
第一行两个数 N , M .
Output
输出满足要求的数的个数.
Sample Input
223 4
Sample Output
1
题解
状压DP.
\(f[i][j]\)中, \(i\)是状态, 表示原数中哪些位已经被新数占用. 因此, 一个Naive的想法就是对于新数的每一位, 进行一次DP, 时间复杂度: \(2^{18} \times 18 \times 18\), 显然会TLE.
我们注意到, 每当我们进行一次转移, 也就是在新数中填入一位的时候, 状态\(i\)都只会变小, 因此我们从\(2^{18} - 1\)往下直接进行一次DP即可. 时间复杂度: \(2^{18} * 18\), 尚可接受.
#include <cstdio>
#include <cstring>
const int LEN = 18, M = 100;
int main()
{
#ifndef ONLINE_JUDGE
freopen("CF401D.in", "r", stdin);
#endif
static long long pw[LEN];
pw[0] = 1;
for(int i = 1; i < LEN; ++ i)
pw[i] = pw[i - 1] * 10;
long long n, m;
scanf("%lld%lld\n", &n, &m);
int len = 0;
long long tmp = n;
static int cnt[10];
for(; tmp; tmp /= 10, ++ len)
++ cnt[tmp % 10];
static long long fac[10];
for(int i = 0; i < 10; ++ i)
{
fac[i] = 1;
for(int j = 1; j <= cnt[i]; ++ j)
fac[i] *= j;
}
static long long f[1 << LEN][M];
memset(f, 0, sizeof(f));
f[(1 << len) - 1][0] = 1;
/*
for(int l = len - 1; ~ l; -- l)
for(long long i = 0; i < 1 << len; ++ i)
for(int j = 0; j < m; ++ j)
if(f[i][j])
{
for(int k = 0; k < len; ++ k)
{
if(n / pw[k] % 10 == 0 && l == len - 1)
continue;
if(i >> k & 1)
f[i ^ (1 << k)][(j + n / pw[k] % 10 * pw[l]) % m] += f[i][j];
}
f[i][j] = 0;
} */
for(int i = (1 << len) - 1; ~ i; -- i)
for(int j = 0; j < len; ++ j)
if(i >> j & 1 && (i ^ (1 << len) - 1 || n / pw[j] % 10 % 10))
for(int k = 0; k < m; ++ k)
f[i ^ (1 << j)][(k * 10 + n / pw[j] % 10) % m] += f[i][k];
long long ans = f[0][0];
for(int i = 0; i < 10; ++ i)
ans /= fac[i];
printf("%lld\n", ans);
}
Codeforces 401D Roman and Numbers的更多相关文章
- codeforces 401D. Roman and Numbers 数位dp
题目链接 给出一个<1e18的数, 求将他的各个位的数字交换后, 能整除m的数的个数. 用状态压缩记录哪个位置的数字已经被使用了, 具体看代码. #include<bits/stdc++. ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp
题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers(如压力dp)
Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standard i ...
- [codeforces 55]D. Beautiful numbers
[codeforces 55]D. Beautiful numbers 试题描述 Volodya is an odd boy and his taste is strange as well. It ...
- 题解-Roman and Numbers
题解-Roman and Numbers 前置知识: 数位 \(\texttt{dp}\) </> \(\color{#9933cc}{\texttt{Roman and Numbers} ...
- CF401D Roman and Numbers 状压DP
CF401D 题意翻译 将n(n<=10^18)的各位数字重新排列(不允许有前导零) 求 可以构造几个mod m等于0的数字 题目描述 Roman is a young mathematicia ...
- CodeForces - 1245A Good ol' Numbers Coloring (思维)
Codeforces Round #597 (Div. 2 Consider the set of all nonnegative integers: 0,1,2,-. Given two integ ...
- CodeForces 682A Alyona and Numbers (水题)
Alyona and Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/A Description After fi ...
随机推荐
- POJ 3281 网络流 拆点 Dining
题意: 有F种食物和D种饮料,每头牛有各自喜欢的食物和饮料,而且每种食物或者饮料只能给一头牛. 求最多能有多少头牛能同时得到它喜欢的食物或者饮料. 分析: 把每个牛拆点,中间连一条容量为1的边,保证一 ...
- js---post与get请求的区别
request获取请求参数 最为常见的客户端传递参数方式有两种: 浏览器地址栏直接输入:一定是GET请求: 超链接:一定是GET请求: 表单:可以是GET,也可以是POST,这取决与<form& ...
- Java常用api和操作必背
1.数组排序 Java的Arrays类(java.util中)包含用来操作数组(比如排序和搜索)的各种方法. Arrays.sort(各种类型数组) 2.数组转字符串 1)打印数组时可用Arrays. ...
- MySQL常见数据库引擎及比较?
一:MySQL存储引擎简介 MySQL有多种存储引擎,每种存储引擎有各自的优缺点,大家可以择优选择使用:MyISAM.InnoDB.MERGE.MEMORY(HEAP).BDB(BerkeleyDB) ...
- logging模块的作用以及应用场景
一.python中的logging模块 logging模块定义的函数和类为应用程序和库的开发实现了一个灵活的事件日志系统.logging模块是Python的一个标准库模块,由标准库模块提供日志记录AP ...
- DefaultTransactionStatus源码
package org.springframework.transaction.support; import org.springframework.transaction.NestedTransa ...
- 【bzoj2338】[HNOI2011]数矩形 计算几何
题目描述 题解 计算几何 由于对角线平分且相等的四边形是矩形,因此我们可以把每条对角线存起来,按照对角线长度和中点位置为关键字排序,这样对于每个相同长度和中点的对角线就排到了一起. 于是对于每段可能形 ...
- 【Bzoj3944】杜教筛模板(狄利克雷卷积搞杜教筛)
题目链接 哇杜教筛超炫的 有没有见过$O(n^\frac{2}{3})$求欧拉函数前缀和的算法?没有吧?蛤蛤蛤 首先我们来看狄利克雷卷积是什么 首先我们把定义域是整数,陪域是复数的函数叫做数论函数. ...
- 树状数组--前n项和;
树状数组是和线段树类似的数据结构,基本上树状数组可以做的线段树都可以做: 树状数组就是一个数组,在信息记录上有一些特点,以动态求前n项和为例:可以改变数组的某一个元素,求前n项和: 数组tree[ i ...
- 在 Ubuntu 16.04 上安装 Eclipse Oxygen
2017 年 6 月 28 日,Eclipse 社区(the Eclipse Community)发布了 Eclipse Oxygen.本文记录了我在 Ubuntu 16.04 上安装 Eclipse ...