题目链接 https://codeforces.com/gym/101917

E

题意:给定一个多边形(n个点),然后逆时针旋转A度,然后对多边形进行规约,每个点的x规约到[0,w]范围内,y规约到[0,h]范围内,输出规约后的结果。

解析:求出来 多边形的长和宽,再和w,h比较,对点按比例进行缩放就好了。 (多边形旋转其实是绕给出的第一个点旋转,以为是绕原点wa了1发)。

AC代码

 #include <bits/stdc++.h>
#define Vector Point
using namespace std;
typedef long long ll;
const double eps = 1e-;
const double PI=acos(-);
const int maxn = 1e5+,inf=0x3f3f3f3f;
//head-------------------------------------------------------------------
int dcmp(double x) { return fabs(x) < eps ? : (x < ? - : ); }
struct Point {
double x, y; Point(const Point& rhs): x(rhs.x), y(rhs.y) { } //拷贝构造函数
Point(double x = 0.0, double y = 0.0): x(x), y(y) { } //构造函数 friend istream& operator >> (istream& in, Point& P) { return in >> P.x >> P.y; }
friend ostream& operator << (ostream& out, const Point& P) { return out << P.x << ' ' << P.y; } friend Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
friend Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
friend Vector operator * (const Vector& A, const double& p) { return Vector(A.x*p, A.y*p); }
friend Vector operator / (const Vector& A, const double& p) { return Vector(A.x/p, A.y/p); }
friend bool operator == (const Point& A, const Point& B) { return dcmp(A.x-B.x) == && dcmp(A.y-B.y) == ; }
friend bool operator < (const Point& A, const Point& B) { return dcmp(A.x - B.x)< || (dcmp(A.x - B.x)== && dcmp(A.y - B.y)<); }
void in() { scanf("%lf%lf", &x, &y); }
void out() { printf("%.10f %.10f\n", x, y); }
}; template <class T> T sqr(T x) { return x * x;}
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; } //点积
double Length(const Vector& A){ return sqrt(Dot(A, A)); } //向量长度
double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B)/Length(A)/Length(B)); } //AB向量夹角
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; } //AB叉积 有向面积
double Area(const Point& A, const Point& B, const Point& C) { return fabs(Cross(B-A, C-A)); }
//向量旋转 rad正表示逆时针 反之顺时针
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));}
//A不能是0向量
Vector normal(Vector A) { return Point(-A.y, A.x) / Length(A);} //向量A的单位法向量,即A左转90度 以后把长度归归一化
double angle(Vector A) { return atan2(A.y, A.x);} //向量极角 向量A与x轴的夹角
Vector vecunit(Vector A){ return A / Length(A);} //单位向量 struct Line {
Point P; //直线上一点
Vector dir; //方向向量(半平面交中该向量左侧表示相应的半平面)
double ang; //极角,即从x正半轴旋转到向量dir所需要的角(弧度) Line() { } //构造函数
Line(const Line& L): P(L.P), dir(L.dir), ang(L.ang) { }
Line(const Point& P, const Vector& dir): P(P), dir(dir) { ang = atan2(dir.y, dir.x); } bool operator < (const Line& L) const { //极角排序
return ang < L.ang;
}
Point point(double t) { return P + dir*t; }
}; //直线交点1 P+tv Q+tw
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
double t = Cross(w,u)/Cross(v,w);
return P+v*t;
}
//直线交点2
Point GetIntersection(Line a, Line b)
{
Vector u = a.P-b.P;
double t = Cross(b.dir, u) / Cross(a.dir, b.dir);
return a.P + a.dir*t;
}
bool SegmentProperInntersection(Point a1,Point a2,Point b1,Point b2)//线段相交判定
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<&&dcmp(c3)*dcmp(c4)<;
}
double DistanceToSegment(Point P,Point A,Point B) //点P到线段AB的距离
{
if(A==B) return Length(P-A);
Vector v1 = B - A,v2 = P - A,v3 = P - B;
if(dcmp(Dot(v1,v2))<) return Length(v2);
else if(dcmp(Dot(v1,v3))>) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
Point GetLineProjection(Point P,Point A,Point B) //点P在直线AB上的投影
{
Vector v = B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
bool OnSegment(Point p, Point a1, Point a2) //判断点是否在线段a1a2上 不含端点
{
return dcmp(Cross(a1-p, a2-p)) == && dcmp(Dot(a1-p, a2-p)) < ;
} struct Circle {
Point c; //圆心
double r; //半径 Circle() { }
Circle(const Circle& rhs): c(rhs.c), r(rhs.r) { }
Circle(const Point& c, const double& r): c(c), r(r) { } Point point(double ang) const { return Point(c.x + cos(ang)*r, c.y + sin(ang)*r); } //圆心角所对应的点
double area(void) const { return PI * r * r; }
};
bool InCircle(Point x, Circle c)
{
return dcmp(c.r*c.r - Length(c.c - x)*Length(c.c - x)) >= ;
}
//直线与圆的交点
int getLineCircleIntersection(Line L, Circle C, Point* sol) //函数返回交点个数 sol数组存放交点
{
Vector nor = normal(L.dir);
Line pl = Line(C.c, nor);
Point ip = GetIntersection(pl, L);
double dis = Length(ip - C.c);
if (dcmp(dis - C.r) > ) return ;
Point dxy = vecunit(L.dir) * sqrt(C.r*C.r - dis*dis);
int ret = ;
sol[ret] = ip + dxy;
if (OnSegment(sol[ret], L. P, L.point())) ret++;
sol[ret] = ip - dxy;
if (OnSegment(sol[ret], L.P, L.point())) ret++;
return ret;
}
//圆与圆的交点
int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& sol)//函数返回交点个数 sol数组存放交点
{
double d=Length(C1.c-C2.c);
if(dcmp(d)==){
if(dcmp(C1.r-C2.r)==) return -;//两圆重合
return ;
}
if(dcmp(C1.r+C2.r-d)<) return ;
if(dcmp(fabs(C1.r-C2.r)-d)>) return ; double a=angle(C2.c-C1.c);
double da=acos((C1.r*C1.r+d*d-C2.r*C2.r)/(*C1.r*d));
Point p1=C1.point(a-da),p2=C1.point(a+da);
sol.push_back(p1);
if(p1==p2) return ;
sol.push_back(p2);
return ;
}
//过点p到圆c的切线
int getTangents(Point p,Circle C,Vector* v)//函数返回条数,v[i]是第i条切线的向量
{
Vector u=C.c-p;
double dist=Length(u);
if(dist<C.r) return ; //点在圆内
else if(dcmp(dist-C.r)==){//p在圆c上,只有一条切线
v[]=Rotate(u,PI/);
return ;
}else{
double ang = asin(C.r/dist);
v[]=Rotate(u,-ang);
v[]=Rotate(u,ang);
return ;
}
}
//两圆的公切线
int getTangents(Circle A,Circle B,Point* a,Point* b)
{
int cnt=;
if(A.r<B.r){swap(A,B);swap(a,b);}
double d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
double rdiff=A.r - B.r;
double rsum=A.r + B.r;
if(d2<rdiff*rdiff) return ;//内含 double base = atan2(B.c.y-A.c.y,B.c.x-A.c.x);
if(dcmp(d2)==&&dcmp(A.r-B.r)==) return -;//两圆重合,无数条切线
if(dcmp(d2-rdiff*rdiff)==){ //内切,1条切线
a[cnt]=A.point(base);b[cnt]=B.point(base);cnt++;
return ;
}
//有外公切线
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt] = A.point(base+ang);b[cnt] = B.point(base+ang);cnt++;
a[cnt] = A.point(base-ang);b[cnt] = B.point(base-ang);cnt++;
if(dcmp(d2-rsum*rsum)==){ //一条内公切线
a[cnt]=b[cnt]=A.point(base);cnt++;
}
else if(dcmp(d2-rsum*rsum)>){ //两条内公切线
ang = acos((A.r+B.r)/sqrt(d2));
a[cnt] = A.point(base+ang);b[cnt] = B.point(PI+base+ang);cnt++;
a[cnt] = A.point(base-ang);b[cnt] = B.point(PI+base-ang);cnt++;
}
return cnt;
}
double SegCircleArea(Circle C, Point a, Point b) //线段切割圆
{
double a1 = angle(a - C.c);
double a2 = angle(b - C.c);
double da = fabs(a1 - a2);
if (da > PI) da = PI * 2.0 - da;
return dcmp(Cross(b - C.c, a - C.c)) * da * sqr(C.r) / 2.0;
} double PolyCiclrArea(Circle C, Point *p, int n)//多边形与圆相交面积
{
double ret = 0.0;
Point sol[];
p[n] = p[];
for(int i=;i<n;i++)
{
double t1, t2;
int cnt = getLineCircleIntersection(Line(p[i], p[i+]-p[i]), C, sol);
if (cnt == )
{
if (!InCircle(p[i], C) || !InCircle(p[i+], C)) ret += SegCircleArea(C, p[i], p[i+]);
else ret += Cross(p[i+] - C.c, p[i] - C.c) / 2.0;
}
if (cnt == )
{
if (InCircle(p[i], C) && !InCircle(p[i+], C)) ret += Cross(sol[] - C.c, p[i] - C.c) / 2.0, ret += SegCircleArea(C, sol[], p[i+]);
else ret += SegCircleArea(C, p[i], sol[]), ret += Cross(p[i+] - C.c, sol[] - C.c) / 2.0;
}
if (cnt == )
{
if ((p[i] < p[i + ]) ^ (sol[] < sol[])) swap(sol[], sol[]);
ret += SegCircleArea(C, p[i], sol[]);
ret += Cross(sol[] - C.c, sol[] - C.c) / 2.0;
ret += SegCircleArea(C, sol[], p[i+]);
}
}
return fabs(ret);
}
double PolygonArea(Point *po, int n) //多边形面积
{
double area = 0.0;
for(int i = ; i < n-; i++) {
area += Cross(po[i]-po[], po[i+]-po[]);
}
return area * 0.5;
}
//-----------------------------------------------------------------------------------
Point p[maxn];
int main()
{
double a,w,h;
int n;
cin>>a>>w>>h>>n;
double ang=a/*PI;
double minx=inf,maxx=-1.0;
double miny=inf,maxy=-1.0;
for(int i=;i<n;i++)
{
p[i].in();
p[i]=p[]+Rotate(p[i]-p[],ang);
minx=min(minx,p[i].x);
miny=min(miny,p[i].y);
maxx=max(maxx,p[i].x);
maxy=max(maxy,p[i].y);
}
double dux=w/(maxx-minx);
double duy=h/(maxy-miny);
for(int i=;i<n;i++)
{
p[i].x-=minx;
p[i].y-=miny;
p[i].x*=dux;
p[i].y*=duy;
p[i].out();
}
}

I

题意:给出n个狗的坐标,m个碗的坐标和碗里的数的数量w L(升) , 狗每一秒可以走一个单位长度,狗喝水需要10s ,问S秒内每只狗从自己的位置出发是否全部都能喝完1L水。

题解:如果距离在时限内狗和碗连边,碗拆点就可以了。源点汇点不说了,很简单。

AC代码

 #include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+,mod=1e9+,inf=0x3f3f3f3f;
typedef long long ll;
struct edge
{
int from,to,c,f;
edge(int u,int v,int c,int f):from(u),to(v),c(c),f(f) {}
};
int n,m;
vector<edge> edges;
vector<int> g[maxn];
int d[maxn];//从起点到i的距离
int cur[maxn];//当前弧下标
void init(int N)
{
for(int i=; i<=N; i++) g[i].clear();
edges.clear();
}
void addedge(int from,int to,int c) //加边 支持重边
{
edges.push_back(edge(from,to,c,));
edges.push_back(edge(to,from,,));
int siz=edges.size();
g[from].push_back(siz-);
g[to].push_back(siz-);
}
int bfs(int s,int t) //构造一次层次图
{
memset(d,-,sizeof(d));
queue<int> q;
q.push(s);
d[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=;i<g[x].size();i++)
{
edge &e=edges[g[x][i]];
if(d[e.to]<&&e.f<e.c) //d[e.to]=-1表示没访问过
{
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return d[t];
}
int dfs(int x,int a,int t) // a表示x点能接收的量
{
if(x==t||a==)return a;
int flow=,f;//flow总的增量 f一条增广路的增量
for(int &i=cur[x];i<g[x].size();i++)//cur[i] &引用修改其值 从上次考虑的弧
{
edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=dfs(e.to,min(a,e.c-e.f),t))>) //按照层次图增广 满足容量限制
{
e.f+=f;
edges[g[x][i]^].f-=f; //修改流量
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int maxflow(int s,int t)
{
int flow=;
while(bfs(s,t)!=-) //等于-1代表构造层次图失败 结束
{
memset(cur,,sizeof(cur));
flow+=dfs(s,inf,t);
}
return flow;
}
struct node
{
ll first,second;
}dog[maxn],bowl[maxn];
int num[maxn];
ll s;
int main()
{
while(scanf("%d%d%lld",&n,&m,&s)!=EOF)
{
init(n+*m+);
for(int i=;i<=n;i++)
scanf("%lld%lld",&dog[i].first,&dog[i].second);
for(int i=;i<=m;i++)
scanf("%lld%lld%d",&bowl[i].first,&bowl[i].second,&num[i]);
for(int i=;i<=n;i++)
{
addedge(,i,);
for(int j=;j<=m;j++)
{
if(sqrt(pow(abs(dog[i].first-bowl[j].first),)+pow(abs(dog[i].second-bowl[j].second),))+<=s)
addedge(i,n+j,);
}
}
for(int j=;j<=m;j++)
addedge(n+j,n+m+j,num[j]),
addedge(n+m+j,n+*m+,inf);
if(maxflow(,n+m*+)==n)
printf("YES\n");
else
printf("NO\n");
}
}

Gym 101917 E 简单计算几何,I 最大流的更多相关文章

  1. 简单CSS定位瀑布流实现方法

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. 简单聊聊Storm的流分组策略

    简单聊聊Storm的流分组策略 首先我要强调的是,Storm的分组策略对结果有着直接的影响,不同的分组的结果一定是不一样的.其次,不同的分组策略对资源的利用也是有着非常大的不同,本文主要讲一讲loca ...

  3. ●POJ 1556 The Doors(简单计算几何+最短路)

    ●赘述题目 10*10的房间内,有竖着的一些墙(不超过18个).问从点(0,5)到(10,5)的最短路. 按照输入样例,输入的连续5个数,x,y1,y2,y3,y4,表示(x,0--y1),(x,y2 ...

  4. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  5. Gym - 102346G Getting Confidence 最小费用最大流

    Gym - 102346GGetting Confidence 题意:n*n的格子,每个格子上有一个数,要求每行每列都只能拿一个数,使得乘积最大,然后输出每列选择的是第几行的数. 如果是加法的话,那么 ...

  6. 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...

  7. HDU2948Geometry Darts(简单计算几何)

    题目大意就是说两个人掷飞镖,飞镖在所给定的图形内就记一分,现在给定N个图形(圆.三角形和矩形),问每一次比赛(没人分别掷三次)谁赢. #include <map> #include < ...

  8. Gym 101606L - Lounge Lizards - [计算几何+LIS]

    题目链接:https://codeforces.com/gym/101606/problem/L 题解: 在同一条线上的所有蜥蜴,他们的斜率都是相通的,换句话说可以直接通过斜率将蜥蜴分组. 每一组即代 ...

  9. 两个简单的API限流实现方案

    1, Ngnix限流 Nginx在架构中起到请求转发与负载均衡器的作用.外部req首先到Nginx监听的80端口,然后Nginx将req交给到监听8080端口的APP服务器处理.处理结果再经由Ngin ...

随机推荐

  1. mysql 编程

    一.存储函数 相当于php或者js中有返回值的函数 --完成一定“计算”后返回单个的数据值 定义: create function 函数名(parameter p1 value_type, param ...

  2. HDU - 4027 Can you answer these queries?(线段树)

    给定一个长度为n的序列,m次操作. 每次操作 可以将一个区间内的所有数字变为它的根号. 可以查询一个区间内所有元素的和. 线段树的初级应用. 如果把一个区间内的元素都改为它的根号的话,是需要每个数字都 ...

  3. ACM 深度优化搜索算法小总结

    深度优化搜索算法的本质:就是从一状态不断转移,如果无法转移了就需要返回上一个状态,知道找到解为止. 其核心:递归函数 基本模型: dfs(int i, int j) { //控制结束条件 //进行状态 ...

  4. vijos--繁华的都市

    描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路 ...

  5. linux用户和用户组管理详解

    Linux 用户和用户组管理 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账号一方面可以帮助 ...

  6. SQL_5_子句

    接下来讲到的子句有: WHERE STARTING WITH ORDER BY GROUP BY HAVING WHERE: 使用频率仅次于SELECT和FROM STARTING WITH: 附加于 ...

  7. python基础学习笔记——正则表达式

    1.什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则.(在Python中)它内嵌在Python中,并通过 r ...

  8. 启动activity的标准的action常量及对应的字符串

  9. python-高级编程-05-异步IO

    [异步非阻塞IO] ------------------------------------------------------------------------------------------ ...

  10. 使用mysql监视器即命令行下的mysql

    命令行下登录mysql 首先必须在alias下有设置mysql, 我的mysql安装的位置在/usr/local/mysql 于是做了一个别名: alias mysql='/usr/local/mys ...