hdu 1588(矩阵好题+递归求解等比数列)
Gauss Fibonacci
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3149 Accepted Submission(s): 1323
expecting, Angel replied quickly.She says: "I'v heard that you'r a very
clever boy. So if you wanna me be your GF, you should solve the problem
called GF~. "
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As
we know ,Gauss is the famous mathematician who worked out the sum from 1
to 100 very quickly, and Fibonacci is the crazy man who invented some
numbers.
Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.
Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)
The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.
Each of them will not exceed 1,000,000,000.
2 0 4 100
把斐波那契数列转化为矩阵:
A={1 1}
{1,0};
{f[n+1],f[n]}
{f[n],f[n-1]} = A^n ;最后输出M.v[1][0]这就是构造斐波拉契数列的矩阵了。
LL cal(int p,int n){ ///这里是递归求解等比数列模板 1+p+p^2...+p^n
if(n==) return ;
if(n&){//(1+p+p^2+....+p^(n/2))*(1+p^(n/2+1));
return (+pow_mod(p,n/+))*cal(p,n/)%mod;
}
else { //(1+p+p^2+....+p^(n/2-1))*(1+p^(n/2+1))+p^(n/2);
return (pow_mod(p,n/)+(+pow_mod(p,n/+))*cal(p,n/-))%mod;
}
}
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
typedef long long LL;
struct Martix{
LL v[][];
}res;
LL k,b,n,M; Martix mult(Martix a,Martix b){
Martix temp;
for(int i=;i<;i++){
for(int j=;j<;j++){
temp.v[i][j] = ;
for(int k=;k<;k++){
temp.v[i][j] = (temp.v[i][j]+a.v[i][k]*b.v[k][j])%M;
}
}
}
return temp;
} Martix add(Martix a,Martix b){
for(int i=;i<;i++){
for(int j=;j<;j++){
a.v[i][j]=(a.v[i][j]+b.v[i][j])%M;
}
}
return a;
}
Martix pow_mod(Martix a,LL k){
Martix ans;
ans.v[][]=ans.v[][] = ;
ans.v[][]= ans.v[][]=;
while(k){
if(k&) ans = mult(ans,a);
a=mult(a,a);
k>>=;
}
return ans;
} Martix cal(Martix p,LL k) ///用二分法求矩阵和,递归实现 计算 a^1+a^2.....+a^p
{
if(k==)
return p;
else if(k&)
return add(cal(p,k-),pow_mod(p,k));
else
return mult(cal(p,k>>),add(pow_mod(p,k>>),res));
} int main(){ Martix a,t;
a.v[][] = a.v[][] = a.v[][] = ; ///斐波拉契数列的特征值矩阵[1 1 1 0]
a.v[][] = ;
t.v[][] = t.v[][] = ; ///单位矩阵
t.v[][] = t.v[][] = ;
while(scanf("%lld%lld%lld%lld",&k,&b,&n,&M)!=EOF){
Martix M1 = pow_mod(a,k);
res = t;
res = add(t,cal(M1,n-));
if(b!=){
Martix M3 = pow_mod(a,b);
res = mult(res,M3);
}
printf("%d\n",res.v[][]%M);
}
return ;
}
hdu 1588(矩阵好题+递归求解等比数列)的更多相关文章
- HDU 5694——BD String——————【递归求解】
BD String Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- 九度OJ1205题-递归求解问题
题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:5887 解决:2446 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用 ...
- HDU 1588 矩阵快速幂 嵌套矩阵
这个题目搞了我差不多一个下午,之前自己推出一个公式,即 f[n+k]=k*f[n]+f[n-1]结果发现根本不能用,无法降低复杂度. 后来又个博客的做法相当叼,就按他的做法来了 即 最终求得是 S(n ...
- HDU - 1588 矩阵前缀和
题意:给定\(k,b,n,m\),求\(\sum_{i=0}^{n-1}f(g(i))\) 其中\(f(i)=f(i-1)+f(i-2),f(1)=1,f(0)=0\),\(g(i)=k*i+b\) ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- eetCode刷题-递归篇
递归是算法学习中很基本也很常用的一种方法,但是对于初学者来说比较难以理解(PS:难点在于不断调用自身,产生多个返回值,理不清其返回值的具体顺序,以及最终的返回值到底是哪一个?).因此,本文将选择Lee ...
- HDU 4472 Count(数学 递归)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4472 Problem Description Prof. Tigris is the head of ...
- C++递归求解N个元素的所有子集
C++递归求解N个元素的所有子集 引言: 我在复习C++遇到了设计递归函数的问题.这个例子,很好的显示了设计递归的方式,思想. 这与斐波那数列不同,这个例子更有应用意义. 问题: 试编写一个递归函数, ...
- N皇后问题——递归求解
比较简单,废话不说,上代码: public class NQueen { //比如:position[1]=3,表示第一行的第三列有一个皇后 private int [] position; //总的 ...
随机推荐
- 【卡常 bitset 分块】loj#6499. 「雅礼集训 2018 Day2」颜色
好不容易算着块大小,裸的分块才能过随机极限数据:然而这题在线的数据都竟然是构造的…… 题目描述 有 $n$ 个数字,第 $i$ 个数字为 $a_i$. 有 $m$ 次询问,每次给出 $k_i$ 个区间 ...
- 编译-LAMP基于fastcgi
前言 最近没更新新篇幅了,今天就来点干活,过多的也不说了下面着手干!干!干! 准备环境 centos7.5 apr-1.6.3.tar.gz apr-util-1.6.1.tar.gz h ...
- OAuth认证协议中的HMACSHA1加密算法
<?php function hmacsha1($key,$data) { $blocksize=64; $hashfunc='sha1'; if (strlen($key)>$block ...
- Mysql中的联合索引、前缀索引、覆盖索引
索引 索引是一种特殊的文件,它们包含着对数据表里所有记录的引用指针.更通俗的说,数据库索引好比是一本书前面的目录,能加快数据库的查询速度. 联合索引 又名复合索引,由两个或多个列的索引.它规定了mys ...
- py文件转exe时包含paramiko模块出错解决方法
问题描述:python代码中包含paramiko模块的远程登录ssh,在用pyInstaller转为exe时报错, 报错提示为“No handlers could be found for logge ...
- 01_Java 软、弱引用语法介绍
文章导读: 从JDK1.2版本开始,把对象的引用分为四种级别,从而使程序能更加灵活的控制对象的生命周期.这四种级别由高到低依次为:强引用.软引用.弱引用和虚引用, 本章内容介绍了Reference的概 ...
- Leetcode207--->课程表(逆拓扑排序)
题目: 课程表,有n个课程,[0, n-1]:在修一个课程前,有可能要修前导课程: 举例: 2, [[1,0]] 修课程1前需要先修课程0 There are a total of 2 courses ...
- appium安装,和遇到的问题
https://www.cnblogs.com/fnng/p/4540731.html Appium环境搭建时在cmd中输入appium-doctor命令,提示’appium-doctor’ 不是内部 ...
- Python 爬取图书图片和地址
#-*- coding:utf-8 -*- import xlwt import urllib import re def getHtml(url): page = urllib.urlopen(ur ...
- jQuery 遍历函数 ,javascript中的each遍历
jQuery 遍历函数 jQuery 遍历函数包括了用于筛选.查找和串联元素的方法. 函数 描述 .add() 将元素添加到匹配元素的集合中. .andSelf() 把堆栈中之前的元素集添加到当前集合 ...