John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task is only possible if other tasks have already been executed.

John有n件工作要做,不幸的是这些工作并不独立,而是某件工作需要在另一件已经执行完了以后才能执行。

Input
The input will consist of several instances of the problem. Each instance begins with a line containing two integers, 1 ≤ n ≤ 100 and m. n is the number of tasks (numbered from 1 to n) and m is the number of direct precedence relations between tasks. After this, there will be m lines with two integers i and j, representing the fact that task i must be executed before task j. An instance with n = m = 0 will finish the input.

输入会包括若干组。每组先输入 n([1,100])和 m,其中 n 代表标号为 1~n 的 n 件工作。接下来的 m 行给出工作之间的优先度,每行给出两个整数 i、j,代表 i 会在 j 之前执行,n = m = 0时结束输入。

Output
For each instance, print a line with n integers representing the tasks in a possible order of execution.

对于每组数据,打印n个整数,代表着一种可能出现的执行顺序(意即多解输出某一解即可)。

Sample Input
5 4

1 2

2 3

1 3

1 5

0 0
Sample Output
1 4 2 5 3

介绍:

把每个变量看成一个点,“小于”关系看成有向边(比如输入1 2,我们可以画箭头1-->2),这样就可以把数据转化为一个有向图。把图的所有结点排序使得每一条有向边(u,v)对应的u都排在v的前边(不一定相邻)。在图论中,这个问题称为拓扑排序。

本题思路:

显然,我们无法从前到后去贪心选取路径,比如用样例来讲,如果我们先搜索到了 1->3 这条路,然后就储存在结果上的话,无法得知是否还有 1->2->3 这个限定路径,之后再搜到 2 这个点也没法往里补,而 5 这个点处在哪里也不好写命令。

所以反过来贪心:可以发现当深搜到最底端到达点 3 时,它后面再也没有点了,那么无论如何处置其他的点,3放在最后总是没错的。而为了得出点 1 和点 2 的顺序,可以在某个点for遍历了它的全部出度并深搜以后,再将此点放入拓扑序的前端。比如点 1 先扫描到了点 3,到头了,3放里;然后点 1 还有个指向点 2 的箭头,再dfs点 2,于是点 2 也放里了;然后点 1 遍历结束,点 1 放里……请用代码细细体会。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std; const int maxn = ;
int n, m;
int topo[maxn], temp;//最终的拓扑序
bool book[maxn];//记录是否已经访问过某点
vector <int> chu[maxn];//chu[i]储存i指向的所有点 void dfs(int cur)
{
for (int i : chu[cur])
//C++11的特性,表示遍历了vector(实际上哪个容器都可以这么用),i代表具体元素值而不是位置
if (!book[i]) dfs(i);
book[cur] = true;
topo[temp--] = cur;
} int main()
{
while (~scanf("%d%d", &n, &m) && (n | m))//注意m是可以等于0的,n、m同时等于0才终止
{
//输入和预处理
for (int i = ; i < m; i++)
{
int a, b;
scanf("%d%d", &a, &b);
chu[a].push_back(b);//把b作为a的出度
}
//深搜
memset(book, false, sizeof(book));
temp = n;
for (int i = ; i <= n; i++)
if (!book[i]) dfs(i);
//输出
for (int i = ; i <= n; i++)
chu[i].clear(), printf("%d%c", topo[i], " \n"[i==n]);
}
}

UVA10305:Ordering Tasks(拓扑排序)的更多相关文章

  1. UVA.10305 Ordering Tasks (拓扑排序)

    UVA.10305 Ordering Tasks 题意分析 详解请移步 算法学习 拓扑排序(TopSort) 拓扑排序的裸题 基本方法是,indegree表示入度表,vector存后继节点.在tops ...

  2. M - Ordering Tasks(拓扑排序)

    M - Ordering Tasks Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Descri ...

  3. UVa 10305 - Ordering Tasks (拓扑排序裸题)

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  4. Ordering Tasks 拓扑排序

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  5. Uva 10305 - Ordering Tasks 拓扑排序基础水题 队列和dfs实现

    今天刚学的拓扑排序,大概搞懂后发现这题是赤裸裸的水题. 于是按自己想法敲了一遍,用queue做的,也就是Kahn算法,复杂度o(V+E),调完交上去,WA了... 于是检查了一遍又交了一发,还是WA. ...

  6. UVA10305 Ordering Tasks (拓扑序列)

    本文链接:http://www.cnblogs.com/Ash-ly/p/5398586.html 题意: 假设有N个变量,还有M个二元组(u, v),分别表示变量u 小于 v.那么.所有变量从小到大 ...

  7. UVA 10305 Ordering Tasks(拓扑排序的队列解法)

    题目链接: https://vjudge.net/problem/UVA-10305#author=goodlife2017 题目描述 John有n个任务,但是有些任务需要在做完另外一些任务后才能做. ...

  8. 拓扑排序(Topological Order)UVa10305 Ordering Tasks

    2016/5/19 17:39:07 拓扑排序,是对有向无环图(Directed Acylic Graph , DAG )进行的一种操作,这种操作是将DAG中的所有顶点排成一个线性序列,使得图中的任意 ...

  9. UVA-10305 Ordering Tasks (拓扑排序)

    题目大意:给出n个点,m条关系,按关系的从小到大排序. 题目分析:拓扑排序的模板题,套模板. kahn算法: 伪代码: Kahn算法: 摘一段维基百科上关于Kahn算法的伪码描述: L← Empty ...

  10. Uva10305 Ordering Tasks

    John有n个任务,但是有些任务需要在做完另外一些任务后才能做. 输入 输入有多组数据,每组数据第一行有两个整数1 <= n <= 100 和 m.n是任务个数(标记为1到n),m两个任务 ...

随机推荐

  1. python之yield和Generator

    首先我们从一个小程序导入,各定一个list,找出其中的素数,我们会这样写 import math def is_Prims(number): if number == 2: return True / ...

  2. VOIP语音编码带宽计算

    VOIP Bandwidth consumption naturally depends on the codec used.  VOIP消耗的带宽一般取决于所使用的语音编码. When calcul ...

  3. su 和sudo 命令

    一. 使用 su 命令临时切换用户身份 1.su 的适用条件和威力 su命令就是切换用户的工具,怎么理解呢?比如我们以普通用户beinan登录的,但要添加用户任务,执行useradd ,beinan用 ...

  4. ubuntu16.04 跑Apollo Demo

    1.安装docker(参考网址:https://docs.docker.com/install/linux/docker-ce/ubuntu/) Uninstall old versions Olde ...

  5. 使用Axis2创建Web Service

    Axis2是新一代Web Service开发工具,目前最新版本是1.5.本文主要介绍如何用Axis2创建Web Service. 首先下载二进制包和war包,将war包复制到Tomcat的webapp ...

  6. 八、MyEclipse多次重装、删除注册表、重装系统激活都不成功,终极解决方法 - imsoft.cnblogs

    MyEclipse(2010,2014)激活不成功的结论: [问题原因]激活不成功时,主要是激活的密钥文件.myeclipse.properties不在指定的位置.(一般都在D.E.F.G等盘符根目录 ...

  7. python os.system重定向stdout到变量 ,同时获取返回值

    Python执行系统命令的方法 os.system(),os.popen(),commands 最近在做那个测试框架的时候发现 Python 的另一个获得系统执行命令的返回值和输出的类. 最开始的时候 ...

  8. Outlook 开发

    转自:http://www.cnblogs.com/madebychina/archive/2011/09/20/madebychina_2.html C#使用如下代码调用Outlook2003发送邮 ...

  9. OO易错点总结

    在写子类的构造函数时,要在初始化列表中指定使用的父类的构造函数并完成其初始化,如下例: AudioBook(const string& bookname, const string& ...

  10. python如何实现相对导入

    如果python中导入的package或module不在环境变量PATH中,可以使用sys.path将要导入的package或module加入到PATH环境变量中,之后便能使用相对导入方法. 拿hom ...