BZOJ1415(期望dp)
解法:
首先bfs预处理go数组:可可在j点时聪聪在点i是怎样贪心走的,这是为了之后O(1)获取转移线路。
然后dfs记忆化一下f[i][j],代表从i到j的期望,对于每层:将所有情况的期望值相加。边界值是聪聪与可可在同一个点期望为0、聪聪一步或两步可到可可处期望为1。
const int maxn = ;
int n, m, st, ed;
vector<int> dd[maxn];
int go[maxn][maxn];
db f[maxn][maxn]; void bfs() {
for (int i = ; i <= n; i++)
sort(dd[i].begin(), dd[i].end());
for (int i = ; i <= n; i++) {
queue<P> Q;
bool vis[n + ];
memset(vis, false, sizeof vis);
vis[i] = true;
for (int t = ; t < dd[i].size(); t++) {
int j = dd[i][t];
Q.push(P(j, j));
vis[j] = true;
go[i][j] = j;
}
while (!Q.empty()) {
P x = Q.front(); Q.pop();
for (int t = ; t < dd[x.first].size(); t++) {
int j = dd[x.first][t];
if (!vis[j]) {
vis[j] = true;
go[i][j] = x.second;
Q.push(P(j, x.second));
}
}
}
}
} db dfs(int i, int j) {
if (i == j) return f[i][j] = ;
if (go[i][j] == j || go[go[i][j]][j] == j) return f[i][j] = ;
if (f[i][j] == ) {
db p = dd[j].size() + ;
int nx = go[go[i][j]][j];
for (int k = ; k < dd[j].size(); k++) {
f[i][j] += dfs(nx, dd[j][k]);
}
f[i][j] += dfs(nx, j);
f[i][j] = f[i][j] / p + ;
}
return f[i][j];
} int main() {
read(n), read(m), read(st), read(ed);
for (int i = ; i <= m; i++) {
int u, v;
read(u), read(v);
dd[u].push_back(v);
dd[v].push_back(u);
}
bfs();
printf("%.3lf\n", dfs(st, ed));
return ;
}
BZOJ1415(期望dp)的更多相关文章
- 【bzoj1415】【聪聪和可可】期望dp(记忆化搜索)+最短路
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=57148470 Descrition 首先很明显是 ...
- BZOJ1415 聪聪与可可 - 期望dp
传送门 题目大意: 一张无向图上有一只猫和一只老鼠,猫先走,鼠后走.猫每次会向与其相邻的并且距离老鼠最近的点移动(若距离相等去编号较小的),如果移动一步后还没吃到老鼠,还可以再移动一步(算在一个时间内 ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
随机推荐
- javascript中获取class
js中没有获取class的办法,找了一些封装好的方法,这里整理一下 (1)先进行封装 //封装getClass function getClass(tagName,className) //获得标签名 ...
- Spring Boot2.0之 整合Zookeeper集群
普通的连接: pom: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://w ...
- SecureCRT自动备份脚本-思科
利用SecureCRT脚本对思科设备进行批量备份: (1)新建文本文件(注意保存路径,本次测试路径为D:\backup\list.txt): x.x.x.x username password ena ...
- c/c++生成预编译文件
Preprocesses C and C++ source files and writes the preprocessed output to a file. /P Remarks The f ...
- python装饰器精髓代码
#!/usr/bin/env python #-*- coding:utf-8 -*- import time def foo(func): def inner(): print('fs...') f ...
- bzoj2962
线段树+卷积 这个东西直接算不太好,但是合并两段结果却很方便,假设c[i]表示选i个数乘积的和,那么$a[i]=\sum_{j=0}^{i}{b[j]*c[i-j]}$ 线段树维护即可 #includ ...
- float和Float的区别
float是基本数据类型,Float是包装类(封装类).封装类可将接本数据类型封装后当作对象进行操作,并为各种基本数据类型提供各种转换功能.例如Float f = new Float(3.4f);,即 ...
- iOS项目上线的流程
基本知识 首先要了解一下Xcode打包签名机制中 Certificates & Identificates &Provisioning Profiles 三者之间的关系: Certif ...
- A-Z,a-z,0-9的unicode编码表
1.转自:https://blog.csdn.net/fedawn/article/details/7307993 A-Z 的 Unicode 字符编码表 十进制 十六进制 1.“A”的 U ...
- 有关map中使用iterate迭代器遍历的不保序问题和list remove(object)的细节问题
今天在做项目的过程中发现了如下两个问题: 一 使用map的iterator迭代器对map进行遍历得到的结果是不保序的,也就是每次输出结果都是不一样的.针对这个问题,看以下iterator迭代器的源码. ...