传送门

不知道线性基是什么东西的可以看看蒟蒻的总结

第一眼:这不会是个倍增LCA暴力合并线性基吧……

打了一发……A了?

所以这真的是个暴力倍增LCA合并线性基么……

ps:据某大佬说其实可以离线之后用点分做,那样的话因为每次只要合并两个线性基,复杂度可以减一个$log$

 //minamoto
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
using namespace std;
inline ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while((ch=getc())>''||ch<'')
(ch=='-')&&(flag=true);
for(res=num;(ch=getc())<=''&&ch>='';res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(ll x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=;
int n,q,tot,head[N],Next[N<<],ver[N<<],dep[N];
ll fa[N][],b[N][][],sum,ans[],val[N];
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
inline void get(ll *b,ll x){
for(int i=;i>=;--i)
if(x>>i&){
if(!b[i]) return (void)(b[i]=x);
x^=b[i];
}
}
inline void merge(ll *b,ll *x){
for(int i=;i>=;--i)
if(x[i]) get(b,x[i]);
}
inline void init(int i){
for(int j=;j<;++j){
fa[i][j]=fa[fa[i][j-]][j-];
memcpy(b[i][j],b[i][j-],sizeof(b[i][j-]));
merge(b[i][j],b[fa[i][j-]][j-]);
}
}
void dfs(int u,int f){
fa[u][]=f,dep[u]=dep[f]+,init(u);
for(int i=head[u];i;i=Next[i])
if(ver[i]!=f) dfs(ver[i],u);
}
void LCA(int u,int v){
if(dep[u]<dep[v]) swap(u,v);
for(int i=;i>=;--i)
if(dep[fa[u][i]]>=dep[v])
merge(ans,b[u][i]),u=fa[u][i];
if(u==v) return (void)(merge(ans,b[u][]));
for(int i=;i>=;--i)
if(fa[u][i]!=fa[v][i]){
merge(ans,b[u][i]),merge(ans,b[v][i]);
u=fa[u][i],v=fa[v][i];
}
merge(ans,b[u][]),merge(ans,b[v][]),merge(ans,b[fa[u][]][]);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),q=read();
for(int i=;i<=n;++i)
get(b[i][],val[i]=read());
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add(u,v),add(v,u);
dfs(,);
while(q--){
memset(ans,,sizeof(ans));
int u=read(),v=read();
LCA(u,v);
sum=;
for(int i=;i>=;--i)
cmax(sum,sum^ans[i]);
print(sum);
}
Ot();
return ;
}

洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)的更多相关文章

  1. 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增

    P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...

  2. [洛谷P3292] [SCOI2016]幸运数字

    洛谷题目链接:[SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城 ...

  3. [BZOJ4568][Scoi2016]幸运数字 倍增+线性基

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1791  Solved: 685[Submit][Statu ...

  4. 【BZOJ4568】[Scoi2016]幸运数字 倍增+线性基

    [BZOJ4568][Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念 ...

  5. 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]

    题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...

  6. BZOJ 4568: [Scoi2016]幸运数字(倍增+线性基)

    传送门 解题思路 异或最大值肯定线性基了,树上两点那么就倍增搞一搞,就维护每个点到各级祖先的线性基,时间复杂度\(O(nlog^3n)\),并不知道咋过去的. 代码 #include<iostr ...

  7. [SCOI2016]幸运数字(线性基,倍增)

    [SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作 ...

  8. 【BZOJ 4568】 4568: [Scoi2016]幸运数字 (线性基+树链剖分+线段树)

    4568: [Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形 ...

  9. bzoj4568: [Scoi2016]幸运数字(LCA+线性基)

    4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和 ...

随机推荐

  1. 面向资源操作的http请求

    Guide | Echo - High performance, minimalist Go web framework https://echo.labstack.com/guide e.POST( ...

  2. rule-based optimizer cost-based optimizer

    SQL processing uses the following main components to execute a SQL query: The Parser checks both syn ...

  3. SVD分解的理解

    对称阵A 相应的,其对应的映射也分解为三个映射.现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换: 由于正交阵“ U的逆=U‘ ”,对于两个空间来讲,新空间下的“ 基E' 坐标 ...

  4. Package 'sun-java6-jdk' has no installation candidate 解决方式【转】

    本文转载自:http://www.cnblogs.com/changefuture/archive/2012/06/19/2554876.html 解决方式: sudo add-apt-reposit ...

  5. buntu下命令行安装jdk,android-studio,及genymotion虚拟机来进行android开发【转】

    本文转载自:http://www.cnblogs.com/iamhenanese/p/5491862.html 安装JDK 从oracle官网下最新版的linux64位的jdk包(现在最新为jdk-8 ...

  6. 青岛理工ACM交流赛 J题 数格子算面积

    数格子算面积 Time Limit: 1000MS Memory limit: 262144K 题目描述 给你一个多边形(用’\’和’/’表示多边形的边),求多边形的面积. 输入  第一行两个正整数h ...

  7. Spring Boot2.0之 整合Zookeeper集群

    普通的连接: pom: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://w ...

  8. Oracle数据查看被锁住的用户

    //lock_date是被锁住时间,如果为空证明这个用户没有被锁住 select username,lock_date from dba_users where username='GFMIS';   ...

  9. linux应用之samba服务的安装及配置(centos)

    一.安装方式: 本文通过yum来重新进行Samba服务器的安装与配置. 二.Samba的简介: Samba是一个能让Linux系统应用Microsoft网络通讯协议的软件,而SMB是Server Me ...

  10. bzoj2132【圈地计划】

    题面 思路: 一开始以为和为了博多一样,两边连一样的,后来发现中间连负边的话根本不会割,即割断两块收益为负,所以WA的起飞…… 正解是先黑白染色,每个点和它周围的点连边方式不同.对于黑点A,S--&g ...