洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)
不知道线性基是什么东西的可以看看蒟蒻的总结
第一眼:这不会是个倍增LCA暴力合并线性基吧……
打了一发……A了?
所以这真的是个暴力倍增LCA合并线性基么……
ps:据某大佬说其实可以离线之后用点分做,那样的话因为每次只要合并两个线性基,复杂度可以减一个$log$
//minamoto
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
using namespace std;
inline ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while((ch=getc())>''||ch<'')
(ch=='-')&&(flag=true);
for(res=num;(ch=getc())<=''&&ch>='';res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(ll x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=;
int n,q,tot,head[N],Next[N<<],ver[N<<],dep[N];
ll fa[N][],b[N][][],sum,ans[],val[N];
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
inline void get(ll *b,ll x){
for(int i=;i>=;--i)
if(x>>i&){
if(!b[i]) return (void)(b[i]=x);
x^=b[i];
}
}
inline void merge(ll *b,ll *x){
for(int i=;i>=;--i)
if(x[i]) get(b,x[i]);
}
inline void init(int i){
for(int j=;j<;++j){
fa[i][j]=fa[fa[i][j-]][j-];
memcpy(b[i][j],b[i][j-],sizeof(b[i][j-]));
merge(b[i][j],b[fa[i][j-]][j-]);
}
}
void dfs(int u,int f){
fa[u][]=f,dep[u]=dep[f]+,init(u);
for(int i=head[u];i;i=Next[i])
if(ver[i]!=f) dfs(ver[i],u);
}
void LCA(int u,int v){
if(dep[u]<dep[v]) swap(u,v);
for(int i=;i>=;--i)
if(dep[fa[u][i]]>=dep[v])
merge(ans,b[u][i]),u=fa[u][i];
if(u==v) return (void)(merge(ans,b[u][]));
for(int i=;i>=;--i)
if(fa[u][i]!=fa[v][i]){
merge(ans,b[u][i]),merge(ans,b[v][i]);
u=fa[u][i],v=fa[v][i];
}
merge(ans,b[u][]),merge(ans,b[v][]),merge(ans,b[fa[u][]][]);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),q=read();
for(int i=;i<=n;++i)
get(b[i][],val[i]=read());
for(int i=,u,v;i<n;++i)
u=read(),v=read(),add(u,v),add(v,u);
dfs(,);
while(q--){
memset(ans,,sizeof(ans));
int u=read(),v=read();
LCA(u,v);
sum=;
for(int i=;i>=;--i)
cmax(sum,sum^ans[i]);
print(sum);
}
Ot();
return ;
}
洛谷P3292 [SCOI2016]幸运数字(倍增+线性基)的更多相关文章
- 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增
P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...
- [洛谷P3292] [SCOI2016]幸运数字
洛谷题目链接:[SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城 ...
- [BZOJ4568][Scoi2016]幸运数字 倍增+线性基
4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1791 Solved: 685[Submit][Statu ...
- 【BZOJ4568】[Scoi2016]幸运数字 倍增+线性基
[BZOJ4568][Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念 ...
- 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]
题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...
- BZOJ 4568: [Scoi2016]幸运数字(倍增+线性基)
传送门 解题思路 异或最大值肯定线性基了,树上两点那么就倍增搞一搞,就维护每个点到各级祖先的线性基,时间复杂度\(O(nlog^3n)\),并不知道咋过去的. 代码 #include<iostr ...
- [SCOI2016]幸运数字(线性基,倍增)
[SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作 ...
- 【BZOJ 4568】 4568: [Scoi2016]幸运数字 (线性基+树链剖分+线段树)
4568: [Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形 ...
- bzoj4568: [Scoi2016]幸运数字(LCA+线性基)
4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和 ...
随机推荐
- 初识kbmmw 中的smartbind功能
关于kbmmw smartbind 的开发原因及思路,大家可以参见官方的博客说明和红鱼儿的翻译. 今天我就实例操作一下,给大家演示一下具体实现. 我们新建一个工程 放几个基本的控件 在单元里面加上引用 ...
- EasyPusher安卓Android手机直播推送之RTSP流媒体协议流程
EasyPusher移动端推送同我们平时用的RTSP直播推送流程一样,都是采用标准RTSP/RTP推送流程:ANNOUNCE->SETUP->PLAY->RTP/RTCP->T ...
- win10获取注册表权限
1.cmd中输入regedit打开注册表 2.在需要的注册表项中右键选择“权限”
- BNUOJ 34978 汉诺塔 (概率dp)
题目分析:对于 i 个盘 , 须要移动多少步,取决于最大的盘子在哪个杆上.在C杆上,则最大的盘不须要移动,由于初始状态一定是满足盘由下到上盘子依次变小的,仅仅须要移动i - 1个盘.假设在A杆上,则首 ...
- [Java SE] 字符串连接
Java 支持多种字符串连接方式,总结如下: package cn.spads.tool.string; import java.text.MessageFormat; /** * <b> ...
- 3种方式实现python多线程并发处理
标签: python奇淫技巧 最优线程数 Ncpu=CPU的数量 Ucpu=目标CPU使用率 W/C=等待时间与计算时间的比率 为保持处理器达到期望的使用率,最优的线程池的大小等于$$Nthreads ...
- web安全字体
webfont解剖 Unicode字体可以包含数以千计字形 有四个字体格式: WOFF2, WOFF, EOT, TTF 一些字体格式需要使用GZIP压缩 一个web字体是字形的集合,且每个字形是一个 ...
- UVA-11892(组合游戏)
题意: 给n堆石子,每堆有ai个,每次可以取每堆中任意数目的石子;但是上一次操作的人没有将一堆全部取走,那么下一个人还要在那一堆取; 思路: 每次取到这堆就剩一个的策略; AC代码: #include ...
- [CTSC 2018] 混合果汁
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5343 [算法] 对于每组询问 , 首先二分答案 显然 , 最优策略为优先选择价格低的 ...
- FTP:文件传输协议(指令及响应代码)
文件传输协议(FTP)使得主机间可以共享文件. FTP 使用 TCP 生成一个虚拟连接用于控制信息,然后再生成一个单独的 TCP 连接用于数据传输.控制连接使用类似 TELNET 协议在主机间交换命令 ...