1099. Build A Binary Search Tree (30)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

    Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

    Output Specification:

    For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

    Sample Input:

    9
    1 6
    2 3
    -1 -1
    -1 4
    5 -1
    -1 -1
    7 -1
    -1 8
    -1 -1
    73 45 11 58 82 25 67 38 42

    Sample Output:

    58 25 82 11 38 67 45 73 42

题意:给定n个数插入BST,并且插入数值后的BST结构已经确定,依据这个结构来推断BST上每个节点对应的数值,并且层序遍历BST。

思路:一开始的思路比较复杂,将n各数值从小到大排列,我先搜索出了BST上每个节点左右子树的节点个数。在此基础上就可以递推的确定每个节点对应的数值在数列上的位置。假设

已经确定某一个节点x对应的数值在数列上的位置pos,那么其节点x的左儿子的数值所在位置与pos的距离间隔就是左儿子的右子树节点个数(原因:比左儿子的数值大又比x的数值小,这些节点的数值当然都存储在左儿子的右子树上),从而可以推断左儿子的数值。右儿子的数值推断方法类似。

但其实不需要如此复杂,按照中序遍历的顺序就可以直接推断出各个节点上对应的数值。。。

AC代码:

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<set>
#include<queue>
using namespace std;
#define INF 0x3f3f3f
#define N_MAX 100+5
int n;
struct Node {
int l_child, r_child;
int key;
}node[N_MAX];
vector<int>vec;
pair<int, int>num[N_MAX];
/*
int dfs(int x) {//查询每个节点左右儿子的数量
int left_num=0, right_num=0;
if(node[x].l_child!=-1)left_num = dfs(node[x].l_child);
if (node[x].r_child != -1)right_num = dfs(node[x].r_child);
num[x] = make_pair(left_num, right_num);
return right_num + left_num+1;
} void dfs2(int x,int pos) {//节点x上的数值为vec[pos],考虑节点x与儿子节点的距离来推断儿子节点的位置
node[x].key = vec[pos];
int pos_left = pos - num[node[x].l_child].second - 1;
int pos_right = pos + num[node[x].r_child].first + 1;
if(node[x].l_child!=-1)dfs2(node[x].l_child, pos_left);
if(node[x].r_child!=-1)dfs2(node[x].r_child, pos_right);
}*/ int step = ;
void inorder(int x) {//其实按照中序遍历的顺序就可以依次确定每个节点的数值key
if(node[x].l_child!=-)inorder(node[x].l_child);
node[x].key = vec[step++];
if(node[x].r_child!=-)inorder(node[x].r_child);
} int output[N_MAX];
void bfs(int root) {
queue<int>que;
que.push(root);
int cnt = ;
while(!que.empty()) {
int x = que.front(); que.pop();
output[cnt++] = node[x].key;
if(node[x].l_child!=-)que.push(node[x].l_child);
if(node[x].r_child!=-)que.push(node[x].r_child);
}
} int main(){
while (scanf("%d",&n)!=EOF) {
for (int i = ; i < n;i++) {
int l, r; scanf("%d%d",&l,&r);
node[i].l_child = l, node[i].r_child = r;
}
vec.resize(n);
for (int i = ; i < n; i++)scanf("%d",&vec[i]);
sort(vec.begin(),vec.end());
//dfs(0);
//dfs2(0, num[0].first);
inorder();
bfs();
for (int i = ; i < n; i++)printf("%d%c",output[i],i+==n?'\n':' ');
}
return ;
}

pat 甲级 1099. Build A Binary Search Tree (30)的更多相关文章

  1. PAT甲级——1099 Build A Binary Search Tree (二叉搜索树)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90701125 1099 Build A Binary Searc ...

  2. PAT 甲级 1099 Build A Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805367987355648 A Binary Search Tree ( ...

  3. PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  4. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  5. PAT (Advanced Level) Practise - 1099. Build A Binary Search Tree (30)

    http://www.patest.cn/contests/pat-a-practise/1099 A Binary Search Tree (BST) is recursively defined ...

  6. PAT甲级——A1099 Build A Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  7. 1099. Build A Binary Search Tree (30)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  8. 【PAT甲级】1099 Build A Binary Search Tree (30 分)

    题意: 输入一个正整数N(<=100),接着输入N行每行包括0~N-1结点的左右子结点,接着输入一行N个数表示数的结点值.输出这颗二叉排序树的层次遍历. AAAAAccepted code: # ...

  9. PAT (Advanced Level) 1099. Build A Binary Search Tree (30)

    预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...

随机推荐

  1. 解决使用Application Loader上传ipa提示“上传appstore失败”

    试了好多次使用Application Loader上传ipa,一直提示上传失败,用其他mac电脑却可以,那就是环境有问题,笔者试过重装xcode,都无法解决问题, 查看日志类似是jdk版本问题,换了所 ...

  2. iView - Form中想要重置DatePicker生效,必须给DatePicker绑定value属性

    Form中想要重置DatePicker生效,必须给DatePicker绑定value属性

  3. node 日志分割-pm2-logrotate

    使用pm2-logrotate进行pm2日志切割,测试是按照文件大小1k切割: 安装 pm2 install pm2-logrotate 设置 重启 截图 截图是按照文件大小分割,如果文件小于设置分割 ...

  4. 如何查看连接到手机热点的ip地址

    因为最近玩树莓派,需要手机做热点,然后用树莓派连接到这个热点上,苦于不知道树莓派被分配了什么样的ip地址,经过一番探索,我发现了两种办法, 安装一个 android terminal( 安卓命令行), ...

  5. 分享自己写的基于Dapper的轻量级ORM框架~

    1.说明 本项目是一个使用.NET Standard 2.0开发的,基于 Dapper 的轻量级 ORM 框架,包含基本的CRUD以及根据表达式进行一些操作的方法,目前只针对单表,不包含多表连接操作. ...

  6. tp5依赖注入(自动实例化):解决了像类中的方法传对象的问题

    app\index\Demo1.php namespace app\index\controller; /* 容器与依赖注入的原理 ----------------------------- 1.任何 ...

  7. web前端使用localstorage、sessionstorage、cookie增删获方法

    今天主要的学习内容是cookie与本地储存的知识, 在HTML5中,本地存储是一个window的属性,包括localStorage和sessionStorage,从名字应该可以很清楚的辨认二者的区别, ...

  8. 3D全景漫游

    全景图共分为三种: ①球面全景图 利用一张全景图围成一个球,自身位置位于球体内.由于图片是矩形,所以最上和最下的缝合处很明显就能够看得出来. 球面全景图是最接近人眼的构建模式,若利用多个立面构建,拼接 ...

  9. tcl之基本语法—3

  10. MongDB之各种删除操作

    接口IMongDaoDelete: package com.net.test.mongdb.dao; public interface IMongDaoDelete { public void del ...