Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强

/*
求n个数组成小根堆的方案数。
设f[i]为以i为根的小根堆方案数。
f[i]=C(sz[i]-1,sz[i*2])*f[i*2]*f[i*2+1]。
最神奇的是被lucas坑了一把,当n>mod时预处理就成0啦!!!
*/
#include<iostream>
#include<cstdio>
#define N 1000010
#define lon long long
using namespace std;
int n,mod,hal[N],sz[N];
lon inv[N],jc1[N],jc2[N];
void init(){
inv[]=inv[]=;for(int i=;i<=n;i++) inv[i]=((mod-mod/i)*inv[mod%i])%mod;
jc1[]=;for(int i=;i<=n;i++) jc1[i]=(jc1[i-]*i)%mod;
jc2[]=;for(int i=;i<=n;i++) jc2[i]=(jc2[i-]*inv[i])%mod;
}
lon C(int n,int m){
if(n<m) return ;
if(n>mod||m>mod) return (C(n%mod,m%mod)*C(n/mod,m/mod))%mod;
else return ((jc1[n]*jc2[m])%mod*jc2[n-m])%mod;
}
void dfs1(int x){
sz[x]=;
if(x*<=n) dfs1(x*),sz[x]+=sz[x*];
if(x*+<=n) dfs1(x*+),sz[x]+=sz[x*+];
}
lon dfs2(int x){
if(x*>n) return ;
lon tot=C(sz[x]-,sz[x*]);
if(x*<=n) tot=(tot*dfs2(x*))%mod;
if(x*+<=n) tot=(tot*dfs2(x*+))%mod;
return tot;
}
int main(){
scanf("%d%d",&n,&mod);
init();
dfs1();
printf("%d",dfs2());
return ;
}

Perm 排列计数(bzoj 2111)的更多相关文章

  1. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  4. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  5. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  6. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  7. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  8. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  9. bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

随机推荐

  1. 关于小程序button控件上下边框的显示和隐藏问题

    问题: 小程序的button控件上下有一条淡灰色的边框,在空件上加上了样式 border:(none/0); 都没办法让button上下的的边框隐藏: 代码如下 <button class=&q ...

  2. ELFhash - 优秀的字符串哈希算法

    ELFhash - 优秀的字符串哈希算法 2016年10月29日 22:12:37 阅读数:6440更多 个人分类: 算法杂论算法精讲数据结构 所属专栏: 算法与数据结构   版权声明:本文为博主原创 ...

  3. js动态刷新时间

    <script type="text/javascript"> //取得系统当前时间 function getTime(){ var myDate = new Date ...

  4. 十一、MySQL 插入数据

    MySQL 插入数据 MySQL 表中使用 INSERT INTO SQL语句来插入数据. 你可以通过 mysql> 命令提示窗口中向数据表中插入数据,或者通过PHP脚本来插入数据. 语法 以下 ...

  5. webpack的配置处理

    1.webpack对脚本的处理 1.Js用什么loader加载? 1>webpack 本身就支持js的加载, 2>通过babel-loader ES2015 加载js,再用 babel-p ...

  6. 关于Linux系统下zookeeper集群的搭建

    1.集群概述 1.1什么是集群 1.1.1集群概念 集群是一种计算机系统, 它通过一组松散集成的计算机软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台计算机.集群系 ...

  7. python之格式化

    python有两种方式可以格式化一种是用%s,一种使用format(2.6)进入的,从下面的代码可以看出,效果差不多. name = 'edward' age = 27 print("My ...

  8. [转]Git for windows 下vim解决中文乱码的有关问题

    Git for windows 下vim解决中文乱码的问题 原文链接:Git for windows 下vim解决中文乱码的有关问题 1.右键打开Git bash: 2.cd ~ 3.vim .vim ...

  9. CA证书申请、认证原理

    (一) 证书的申请 密钥文件的格式用OpenSSL生成的就只有PEM和DER两种格式,PEM的是将密钥用base64编码表示出来的,直接打开你能看到一串的英文字母,DER格式是二进制的密钥文件,直接打 ...

  10. Java -X命令

    C:\Users\Administrator>java -X -Xmixed 混合模式执行 (默认) -Xint 仅解释模式执行 -Xbootclasspath:<用 ; 分隔的目录和 z ...