CF 964C Alternating Sum
给定两正整数 $a, b$ 。给定序列 $s_0, s_1, \dots, s_n,s_i$ 等于 $1$ 或 $-1$,并且已知 $s$ 是周期为 $k$ 的序列并且 $k\mid (n+1)$,输入只给出序列 $s$ 的前 $k$ 项。
Find out the non-negative remainder of division of $\sum\limits_{i=0}^n s_i a^{n-i}b^i$ by $10^9+9$.
数据范围
$ 1\le n, a, b \le 10^9$
$ 1\le k \le 10^5$
分析
注意到 $10^9 + 9$ 是一个素数,令 $p = 10^9 + 9$ 。
问题可化为等比数列求和。公比为 $q = \left(\dfrac{b}{a}\right)^k$ 。要特别注意 $q = 1 \pmod{p}$ 时等比数列的求和公式不再适用。
比赛时,我第一发提交没有注意到这个点。后来想到这个点,但只想到了 $a = b \pmod{p}$ 的情况。其实这并不是使 $q = 1$ 的唯一情况,至少还有一种情况「$a = - b \pmod {p}$ 且 $k$ 为偶数」也使得 $q = 1$ 。比赛时我没想到这种情况,到快结束时,把用公式求和换成折半求和才通过的。
$1-(\frac{b}{a})^k $ 在模 $p$ 逆元不存在 $\iff$ $1-(\frac{b}{a})^k = 0 \pmod{p}$ $\iff$ $(\frac{b}{a})^k = 1 \pmod{p}$
「这一段论证真是太蠢了,被自己给蠢哭了」
下面仔细分析一下这个问题
令 $S = \sum\limits_{i=0}^{k-1} s_i a^{n-i}b^i$ 。考虑 $q \ne 1\pmod{p}$ 的情形。
求和公式为
\[
\frac{S(1-(\frac{b}{a})^{n+1})} {1-(\frac{b}{a})^k}
\]
分母 $1-(\frac{b}{a})^k$ 在模 $p$ 下的逆元一定存在吗?
答案是肯定的。假设分母在模 $p$ 下的逆元不存在,即 $p\mid (a^k - b^k)(a^k)^{-1}\iff p\mid (a^k - b^k)$
总结
当意识等比数列求和公式有不适用的情况时,应当进一步问自己,「等比数列求和公式不适用的充要条件是什么?」然后就自然会想到「直接去判断 $\left(\dfrac{b}{a}\right)^k \bmod p$ 是否等于 $1$」 。
CF 964C Alternating Sum的更多相关文章
- Codeforces 964C Alternating Sum
Alternating Sum 题意很简单 就是对一个数列求和. 题解:如果不考虑符号 每一项都是前一项的 (b/a)倍, 然后考虑到符号的话, 符号k次一循环, 那么 下一个同一符号的位置 就是 这 ...
- codeforces 963A Alternating Sum
codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...
- CF963A Alternating Sum
思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...
- Codeforces 963 A. Alternating Sum(快速幂,逆元)
Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...
- [codeforces round#475 div2 ][C Alternating Sum ]
http://codeforces.com/contest/964/problem/C 题目大意:给出一个等比序列求和并且mod 1e9+9. 题目分析:等比数列的前n项和公式通过等公比错位相减法可以 ...
- Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)
题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...
- zoj 3813 Alternating Sum(2014ACMICPC Regional 牡丹江站网络赛 E)
1.http://blog.csdn.net/dyx404514/article/details/39122743 思路:题目意思很清楚了,这里只说思路. 设区间[L,R],区间长度为len=(R-L ...
- [zoj3813]Alternating Sum 公式化简,线段树
题意:给一个长度不超过100000的原串S(只包含数字0-9),令T为将S重复若干次首尾连接后得到的新串,有两种操作:(1)修改原串S某个位置的值(2)给定L,R,询问T中L<=i<=j& ...
- CF 577B Modulo Sum
题意:给一个长度为n的正整数序列,问能不能找到一个不连续的子序列的和可以被m整除. 解法:抽屉原理+dp.首先当m<n时一定是有答案的,因为根据抽屉原理,当得到这个序列的n个前缀和%m时,一定会 ...
随机推荐
- 安装CentOS6.9虚拟机
安装CentOS6.9 之前在学习项目时,都是用的按键好的虚拟机.这次自己也尝试搭建一下.(虽然也是google的) 首先大部分过程都是参考https://blog.csdn.net/pengpeng ...
- SummerVocation_Learning--java的线程死锁
public class Test_DeadLock implements Runnable { ; static Object o1 = new Object(),o2 = new Object() ...
- SAP 各模块常用的BAPI
MM模块 1. BAPI_MATERIAL_SAVEDATA 创建物料主数据 注意参数EXTENSIONIN的使用,可以创建自定义字段 例如:WA_BAPI_TE_MARA-MATERIAL = IT ...
- pycharm 语言配置
在pycharm 安装所在位置找到 lib 文件夹 打开后找到 rescources_**.jar 文件 **为语言类型,英语为en 中文为cn, 用相应语言文件替换,便可变成相应语言 https:/ ...
- 【CodeBase】通过层级键在多维数组中获取目标值
通过层级键在多维数组中获取目标值 /* *Author : @YunGaZeon *Date : 2017.08.09 *param data : Data Array *param keys : K ...
- jQuery的select2下拉框的搜索功能(使用select2插件,方便简单)
第一步: 引入我们用使用的插件 jquery: select2: css: js: 第二步: 创建一个html页面,body内容: <div> <select class=" ...
- 分享 php array_column 函数 无法在低版本支持的 修改
function i_array_column($input, $columnKey, $indexKey=null){ if(!function_exists('array_column')){ $ ...
- 04vim的使用
linux常用命令 workon 查看已经安装的虚拟环境 deactivate 退出虚拟环境 whoami 查看用户 sudo bash install.sh 添加权限 pwd 查看在那个路径下 cd ...
- BFS:HDU-1242-Rescue(带守卫的迷宫问题)(优先队列)
解题心得: 1.读清楚题意,本题的题意是有多个'r'(起点),多个r多个bfs比较最短的时间即可,但是hdoj的数据比较水,直接一个起点就行了,迷宫里有多个守卫,如果在路途中遇到守卫会多花费一个时间点 ...
- 51nod_1255字典序最小的子序列
作为贪心算法的某道例题,赶脚药丸啊..这么简单的代码重构第三遍才过... 首先是贪心算法思想, 1,证明贪心算法有效性:贪心策略,使用栈结构实现,遍历输入串中所有元素,对于某个元素有如下两种情况: 情 ...