CF 964C Alternating Sum
给定两正整数 $a, b$ 。给定序列 $s_0, s_1, \dots, s_n,s_i$ 等于 $1$ 或 $-1$,并且已知 $s$ 是周期为 $k$ 的序列并且 $k\mid (n+1)$,输入只给出序列 $s$ 的前 $k$ 项。
Find out the non-negative remainder of division of $\sum\limits_{i=0}^n s_i a^{n-i}b^i$ by $10^9+9$.
数据范围
$ 1\le n, a, b \le 10^9$
$ 1\le k \le 10^5$
分析
注意到 $10^9 + 9$ 是一个素数,令 $p = 10^9 + 9$ 。
问题可化为等比数列求和。公比为 $q = \left(\dfrac{b}{a}\right)^k$ 。要特别注意 $q = 1 \pmod{p}$ 时等比数列的求和公式不再适用。
比赛时,我第一发提交没有注意到这个点。后来想到这个点,但只想到了 $a = b \pmod{p}$ 的情况。其实这并不是使 $q = 1$ 的唯一情况,至少还有一种情况「$a = - b \pmod {p}$ 且 $k$ 为偶数」也使得 $q = 1$ 。比赛时我没想到这种情况,到快结束时,把用公式求和换成折半求和才通过的。
$1-(\frac{b}{a})^k $ 在模 $p$ 逆元不存在 $\iff$ $1-(\frac{b}{a})^k = 0 \pmod{p}$ $\iff$ $(\frac{b}{a})^k = 1 \pmod{p}$
「这一段论证真是太蠢了,被自己给蠢哭了」
下面仔细分析一下这个问题
令 $S = \sum\limits_{i=0}^{k-1} s_i a^{n-i}b^i$ 。考虑 $q \ne 1\pmod{p}$ 的情形。
求和公式为
\[
\frac{S(1-(\frac{b}{a})^{n+1})} {1-(\frac{b}{a})^k}
\]
分母 $1-(\frac{b}{a})^k$ 在模 $p$ 下的逆元一定存在吗?
答案是肯定的。假设分母在模 $p$ 下的逆元不存在,即 $p\mid (a^k - b^k)(a^k)^{-1}\iff p\mid (a^k - b^k)$
总结
当意识等比数列求和公式有不适用的情况时,应当进一步问自己,「等比数列求和公式不适用的充要条件是什么?」然后就自然会想到「直接去判断 $\left(\dfrac{b}{a}\right)^k \bmod p$ 是否等于 $1$」 。
CF 964C Alternating Sum的更多相关文章
- Codeforces 964C Alternating Sum
Alternating Sum 题意很简单 就是对一个数列求和. 题解:如果不考虑符号 每一项都是前一项的 (b/a)倍, 然后考虑到符号的话, 符号k次一循环, 那么 下一个同一符号的位置 就是 这 ...
- codeforces 963A Alternating Sum
codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...
- CF963A Alternating Sum
思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...
- Codeforces 963 A. Alternating Sum(快速幂,逆元)
Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...
- [codeforces round#475 div2 ][C Alternating Sum ]
http://codeforces.com/contest/964/problem/C 题目大意:给出一个等比序列求和并且mod 1e9+9. 题目分析:等比数列的前n项和公式通过等公比错位相减法可以 ...
- Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)
题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...
- zoj 3813 Alternating Sum(2014ACMICPC Regional 牡丹江站网络赛 E)
1.http://blog.csdn.net/dyx404514/article/details/39122743 思路:题目意思很清楚了,这里只说思路. 设区间[L,R],区间长度为len=(R-L ...
- [zoj3813]Alternating Sum 公式化简,线段树
题意:给一个长度不超过100000的原串S(只包含数字0-9),令T为将S重复若干次首尾连接后得到的新串,有两种操作:(1)修改原串S某个位置的值(2)给定L,R,询问T中L<=i<=j& ...
- CF 577B Modulo Sum
题意:给一个长度为n的正整数序列,问能不能找到一个不连续的子序列的和可以被m整除. 解法:抽屉原理+dp.首先当m<n时一定是有答案的,因为根据抽屉原理,当得到这个序列的n个前缀和%m时,一定会 ...
随机推荐
- geoWithin查询 多边形查询
$geoWithin查询 形状的表示 .$box:矩形,使用 {$box:[[<x1>,<y1>],[<x2>,<y2>]]}表示 都是坐标,第一个坐标 ...
- JSON对象转成formData对象,formData对象转成JSON对象
在向后端请求时,如果上传的数据里存在file文件对象,需要用到表单提交,这时候我们需要将JSON对象,转成formData对象,具体见代码 const formData = new FormData( ...
- python_74_pickle反序列化
import pickle def say(name):#序列化时用完会释放,要想反序列化,要重新写上该函数,否则会出错 print('我的高中', name)#可以和之前的序列化函数不同 f=ope ...
- 【转】mongoDB 学习笔记纯干货(mongoose、增删改查、聚合、索引、连接、备份与恢复、监控等等)
mongoDB 学习笔记纯干货(mongoose.增删改查.聚合.索引.连接.备份与恢复.监控等等) http://www.cnblogs.com/bxm0927/p/7159556.html
- Linux---cp命令学习
cp命令 cp source_file target_file 能够复制文件,如果target_file所指定的文件不存在,cp就创建这个文件,如果已经存在,就把文件内容清空并把source_fil ...
- ElasticSearch High Level REST API【2】搜索查询
如下为一段带有分页的简单搜索查询示例 在search搜索中大部分的搜索条件添加都可通过设置SearchSourceBuilder来实现,然后将SearchSourceBuilder RestHighL ...
- CentOS---zookeeper安装(单机、伪集群、集群)
一:单机安装: 可以参考下面的伪集群安装方式 不同点: 不需要在data目录下创建 myid 文件 不需要配置集群 配置好后的启动和状态查询命令相同!! 二:伪集群模式 伪集群模式就是在同一主机上启动 ...
- file_get_contents函数
今天迁移一个SDK项目到新的机子上,发现项目无法跑起来,报500错误,通过分析,发现原来是file_get_contents函数再作怪,代码如下 public function __construct ...
- Class:向传统类模式转变的构造函数
前言 JS基于原型的'类',一直被转行前端的码僚们大呼惊奇,但接近传统模式使用class关键字定义的出现,却使得一些前端同行深感遗憾而纷纷留言:"还我独特的JS"."净搞 ...
- 二 python并发编程之多进程-理论
一 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 举例(单核+多道,实现多个进程的并发执行): egon在一个时间段内有很多任务要做:python备课的任务,写书的任 ...